精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
1-2x
2x+1+a
是奇函数.
(1)求a的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
(1)由f(x)是奇函数得,f(1)=-f(-1),
1-2
4+a
=-
1-
1
2
1+a
,解得a=2,
(2)∵f(t2-2t)+f(2t2-k)<0,
∴f(t2-2t)<-f(2t2-k),
∵f(x)为奇函数,
∴f(t2-2t)<f(-2t2+k)
由(1)得,
 f(x)=
1-2x
2x+1+2
=
-(2x+1)+2
2(2x+1)
=-
1
2
+
1
2x+1

∴f(x)在定义域内为单调递减函数,
∴t2-2t>-2t2+k,即3t2-2t-k>0恒成立,
∴△=4+12k<0,解得k<-
1
3

故k的取值范围是(-∞,-
1
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案