精英家教网 > 高中数学 > 题目详情
10、若函数y=f(x)的图象与函数y=2x+1的图象关于y=x+1对称,则f(x)=(  )
分析:先根据:“y=f(x)的图象与函数y=2x+1的图象关于y=x+1对称”进行图象变换得到f(x-1)与y=2x关于y=x对称,再结合反函数的知识求得f(x-1),最后即可得f(x).
解答:解:有题意知:f(x-1)与y=2x关于y=x对称,
所以f(x-1)=log2x,
?f(x)=log2(x+1),
故选C.
点评:本小题主要考查奇偶函数图象的对称性、函数的图象变换等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx-2ax.
(1)若函数y=f(x)的图象在点(1,f(1))处的切线为直线l,且直线l与圆(x+1)2+y2=1相切,求a的值;
(2)当a>0时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

3、若函数y=f(x)的图象关于点(h,k)对称,则函数g(x)=f(x+h)-k是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域是[0,2],则函数F(x)=f(x+1)定义域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)的定义域为[-2,4],则函数g(x)=f(x)+f(-x)的定义域是
[-2,2]
[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)已知函数f(x)=-x3+ax2-4(a∈R).若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为
π4

(1)求a;
(2)设f(x)的导函数是f'(x),若m,n∈[-1,1],求f(m)+f'(n)的最小值;
(3)对实数m的值,讨论关于x的方程f(x)=m的解的个数.

查看答案和解析>>

同步练习册答案