精英家教网 > 高中数学 > 题目详情

【题目】已知函数.(其中为自然对数的底数)

(1)若恒成立,求的最大值;

(2)设,若存在唯一的零点,且对满足条件的不等式恒成立,求实数的取值集合.

【答案】(1);(2)

【解析】

1)就三种情况利用导数讨论的单调性及其相应的最小值后可得:时,成立,时,成立,对后一种情况构建新函数,利用导数可求的最大值即可.

2)求出,它是一个减函数且值域,故存在唯一的零点,再由题设条件可以得到,用表示后可把不等式化为,构建新函数,就两类情况利用导数讨论函数的单调性后可得实数的取值,注意后者的进一步讨论以的大小为分类标准.

(1)

时,上单调递增,取

时,矛盾;

时,

只要,即,此时

时,令

所以单调递增,在单调递减,

所以,即

此时

上为增函数;

上为减函数.

所以,所以,故的最大值为

(2)单调递减且的值域为

的唯一的零点为,则

所以

恒成立,则

上恒成立.

上为增函数,注意到,知当时,,矛盾;

时,为增函数,

,则当时,,,为减函数,

所以时,总有,矛盾;

,则当时,,,为增函数,

所以时,总有,矛盾;

所以,此时当时,为增函数,,

时,为减函数,而

所以有唯一的零点.

综上,的取值集合为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,且对任意成等差数列,其公差为.

(1)若,求的值;

(2)若,证明成等比数列();

(3)若对任意成等比数列,其公比为,设,证明数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD是直角梯形,,,侧棱平面ABCD,且.

1)求证:平面平面;

2)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,分别是的中点,将沿着向上翻折到的位置,连接.

1)求证:平面

2)若翻折后,四棱锥的体积,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;

(2)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧面底面,底面为直角梯形,其中

O中点.

)求证:平面

)求锐二面角A—C1D1—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

同步练习册答案