【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,![]()
【答案】(1)
;(2)在2007至2013年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加
千元;
元.
【解析】试题本题第(1)问,由给出的
与
公式求出
与
,从而求出回归直线方程;对第(2)问,由第(1)问求出的回归直线方程进行预测,令
,可得
的近似值.
试题解析:(1)由题意知,
,
,所以![]()
=
,
所以
=
=![]()
,所以线性回归方程为
。
(2)由(1)中的线性回归方程可知,
,所以在2007至2013年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加
千元.
令
得:
,故预测该地区在2015年农村居民家庭人均纯收入为
元。
【易错点】本题的易错点是第(1)问计算错误,第(2)问在2007至2013年该地区农村居民家庭人均纯收入的变化情况,不知道如何回答.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1 .
(1)求数列{bn}的通项公式;
(2)令cn=
,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(2,0),B(0,2),C(cosα,sinα).
(1)若
,且α∈(0,π),求角α的值;
(2)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
在
处取得极大值或极小值,则称
为函数
的极值点.
设函数
,
.
(1)若
有两个极值点
,且满足
,求
的值及
的取值范围;
(2)若
在
处的切线与
的图象有且只有一个公共点,求
的值;
(3)若
,且对满足“函数
与
的图象总有三个交点
”的任意实数
,都有
成立,求
满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|<
)的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为( ) ![]()
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,将三角形ABD沿BD折起,使点A在平面BCD上的投影G落在BD上. ![]()
(1)求证:平面ACD⊥平面ABD;
(2)求二面角G﹣AC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”
B. “x>1”是“|x|>0”的充分不必要条件
C. 若p且q为假命题,则p、q均为假命题
D. 命题p:“x0∈R使得
+x0+1<0”,则
p:“x∈R,均有x2+x+1≥0”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ![]()
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;
(2)当a<
时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com