ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º
nr+1-(n-1)r+1
r+1
£¼nr£¼
(n+1)r+1-nr+1
r+1
£»
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]=2£¬[¦Ð]=4£¬[-
3
2
]=-1
£®ÁîS=
381
+
382
+
383
+¡­+
3125
£¬Çó[S]
µÄÖµ£®
£¨²Î¿¼Êý¾Ý£º80
4
3
¡Ö344.7£¬81
4
3
¡Ö350.5£¬124
4
3
¡Ö618.3£¬126
4
3
¡Ö631.7)
£®
½â£»£¨¢ñ£©ÓÉÌâÒâµÃf'£¨x£©=£¨r+1£©£¨1+x£©r-£¨r+1£©=£¨r+1£©[£¨1+x£©r-1]£¬
Áîf'£¨x£©=0£¬½âµÃx=0£®
µ±-1£¼x£¼0ʱ£¬f'£¨x£©£¼0£¬¡àf£¨x£©ÔÚ£¨-1£¬0£©ÄÚÊǼõº¯Êý£»
µ±x£¾0ʱ£¬f'£¨x£©£¾0£¬¡àf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÊÇÔöº¯Êý£®
¹Êº¯Êýf£¨x£©ÔÚx=0´¦£¬È¡µÃ×îСֵΪf£¨0£©=0£®
£¨¢ò£©ÓÉ£¨¢ñ£©£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬ÓÐf£¨x£©¡Ýf£¨0£©=0£¬
¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬ÇҵȺŵ±ÇÒ½öµ±x=0ʱ³ÉÁ¢£¬
¹Êµ±x£¾-1ÇÒx¡Ù0£¬ÓУ¨1+x£©r+1£¾1+£¨r+1£©x£¬¢Ù
ÔÚ¢ÙÖУ¬Áîx=
1
n
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬µÃ(1+
1
n
)r+1£¾1+
r+1
n
£®
ÉÏʽÁ½±ßͬ³Ënr+1£¬µÃ£¨n+1£©r+1£¾nr+1+nr£¨r+1£©£¬
¼´nr£¼
(n+1)r+1-nr+1
r+1
£¬¢Ú
µ±n£¾1ʱ£¬ÔÚ¢ÙÖÐÁîx=-
1
n
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬
ÀàËƿɵÃnr£¾
nr+1-(n-1)r+1
r+1
£¬¢Û
ÇÒµ±n=1ʱ£¬¢ÛÒ²³ÉÁ¢£®
×ۺϢڣ¬¢ÛµÃ
nr+1-(n-1)r+1
r+1
£¼nr£¼
(n+1)r+1-nr+1
r+1
£¬¢Ü
£¨¢ó£©ÔÚ¢ÜÖУ¬Áîr=
1
3
£¬n·Ö±ðÈ¡Öµ81£¬82£¬83£¬¡­£¬125£¬
µÃ
3
4
(81
4
3
-80
4
3
)£¼
381
£¼
3
4
(82
4
3
-81
4
3
)
£¬
3
4
(82
4
3
-81
4
3
)£¼
382
£¼
3
4
(83
4
3
-82
4
3
)
£¬
3
4
(83
4
3
-82
4
3
)£¼
383
£¼
3
4
(84
4
3
-83
4
3
)
£¬¡­
3
4
(125
4
3
-124
4
3
)£¼
3125
£¼
3
4
(126
4
3
-125
4
3
)
£¬
½«ÒÔÉϸ÷ʽÏà¼Ó£¬²¢ÕûÀíµÃ
3
4
(125
4
3
-80
4
3
)£¼S£¼
3
4
(126
4
3
-81
4
3
)
£®
´úÈëÊý¾Ý¼ÆË㣬¿ÉµÃ
3
4
(125
4
3
-80
4
3
)¡Ö210.2£¬
3
4
(126
4
3
-81
4
3
)¡Ö210.9

ÓÉ[S]µÄ¶¨Ò壬µÃ[S]=211£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºþ±±£©ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º
nr+1-(n-1)r+1
r+1
£¼nr£¼
(n+1)r+1-nr+1
r+1
£»
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]=2£¬[¦Ð]=4£¬[-
3
2
]=-1
£®ÁîS=
381
+
382
+
383
+¡­+
3125
£¬Çó[S]
µÄÖµ£®
£¨²Î¿¼Êý¾Ý£º80
4
3
¡Ö344.7£¬81
4
3
¡Ö350.5£¬124
4
3
¡Ö618.3£¬126
4
3
¡Ö631.7)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÆÕͨ¸ßµÈѧУÕÐÉúÈ«¹úͳһ¿¼ÊÔºþ±±¾íÀíÊý ÌâÐÍ£º044

ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®

(¢ñ)Çóº¯Êýf(x)£½(1£«x)r+1£­(r£«1)x£­1(x£¾£­1)µÄ×îСֵ£»

(¢ò)Ö¤Ã÷£º£»

(¢ó)Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]£½2£¬[¦Ð]£½4£¬[£­]£½£­1£®ÁîS£½£«£«£«¡­£«£¬Çó[S]µÄÖµ£®

(²Î¿¼Êý¾Ý£º£¬£¬£¬)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf£¨x£©=x|x-2m|£¬³£Êým¡ÊR£®
£¨1£©Éèm=0£®ÇóÖ¤£ºº¯Êýf£¨x£©µÝÔö£»
£¨2£©Éèm£¾0£®Èôº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬1]ÉϵÄ×î´óֵΪm2£¬ÇóÕýʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éè-2£¼m£¼0£®¼Çf1£¨x£©=f£¨x£©£¬fk+1£¨x£©=fk£¨f£¨x£©£©£¬k¡ÊN*£®ÉènÊÇÕýÕûÊý£¬Çó¹ØÓÚxµÄ·½³Ìfn£¨x£©=0µÄ½âµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013Äêºþ±±Ê¡¸ß¿¼ÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º£»
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈ磮ÁîµÄÖµ£®
£¨²Î¿¼Êý¾Ý£º£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸