精英家教网 > 高中数学 > 题目详情

设n是正整数,r为正有理数.

(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;

(Ⅱ)证明:

(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如[2]=2,[π]=4,[-]=-1.令S=+…+,求[S]的值.

(参考数据:)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖北)设n是正整数,r为正有理数.
(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)证明:
nr+1-(n-1)r+1
r+1
nr
(n+1)r+1-nr+1
r+1

(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如[2]=2,[π]=4,[-
3
2
]=-1
.令S=
381
+
382
+
383
+…+
3125
,求[S]
的值.
(参考数据:80
4
3
≈344.7,81
4
3
≈350.5,124
4
3
≈618.3,126
4
3
≈631.7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x|x-2m|,常数m∈R.
(1)设m=0.求证:函数f(x)递增;
(2)设m>0.若函数f(x)在区间[0,1]上的最大值为m2,求正实数m的取值范围;
(3)设-2<m<0.记f1(x)=f(x),fk+1(x)=fk(f(x)),k∈N*.设n是正整数,求关于x的方程fn(x)=0的解的个数.

查看答案和解析>>

科目:高中数学 来源:湖北 题型:解答题

设n是正整数,r为正有理数.
(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)证明:
nr+1-(n-1)r+1
r+1
nr
(n+1)r+1-nr+1
r+1

(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如[2]=2,[π]=4,[-
3
2
]=-1
.令S=
381
+
382
+
383
+…+
3125
,求[S]
的值.
(参考数据:80
4
3
≈344.7,81
4
3
≈350.5,124
4
3
≈618.3,126
4
3
≈631.7)

查看答案和解析>>

科目:高中数学 来源:2013年湖北省高考数学试卷(理科)(解析版) 题型:解答题

设n是正整数,r为正有理数.
(Ⅰ)求函数f(x)=(1+x)r+1-(r+1)x-1(x>-1)的最小值;
(Ⅱ)证明:
(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.
(参考数据:

查看答案和解析>>

同步练习册答案