| A. | ①②④ | B. | ②③ | C. | ①④ | D. | ①②③④ |
分析 根据奇函数的性质和f(1+x)=-f(1-x),求出函数的周期,再由所给的解析式和周期性,求出函数在一个周期性的解析式,再画出函数在R上的图象,由图象进行逐一判断.
解答 解:令x取x+1代入f(1+x)=-f(1-x)得,f(x+2)=-f(-x)
∵函数y=f(x)为奇函数,∴f(x+2)=f(x),则函数是周期为2的周期函数,
设0<x<1,则2<x+2<3,
∵当x∈(2,3)时,f(x)=log2(x-1),
∴f(x)=f(x+2)=log2(x+1),
设-1<x<-0,则0<-x<1,
由f(x)=-f(-x)得,f(x)=-log2(-x+1),
根据奇函数的性质和周期函数的性质画出函数的图象:![]()
由上图得,函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;
且函数y=|f(x)|的图象是将y=f(x)的图象在x轴下方的部分沿x轴对称过去,其他不变,
则函数y=|f(x)|是以2为周期的周期函数;
故①②④正确,
而函数y=f(|x|)=$\left\{\begin{array}{l}{f(x)\;\;x≥0}\\{f(-x)\;\;\;\;\;x<0}\end{array}\right.$,则图象如下图:![]()
由图得,图象关于y轴对称,故y=f(|x|)在(k,k+1)( k∈Z)上不是单调递增的,
故③不正确,
故选:A.
点评 本题考查了抽象函数的奇偶性、周期性的综合应用,以及对数函数的图象,考查了数形结合思想和转化能力,难度较大.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 83 | B. | $\sqrt{83}$ | C. | 98$+56\sqrt{2}$ | D. | $\sqrt{98+56\sqrt{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{\sqrt{2}}{2}$] | B. | (0,$\frac{3}{4}$] | C. | [$\frac{\sqrt{2}}{2}$,$\frac{3}{4}$] | D. | ($\frac{3}{4}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com