精英家教网 > 高中数学 > 题目详情
4.已知函数y=f(x)为奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x).当x∈(2,3)时,f(x)=log2(x-1).给出以下4个结论:其中所有正确结论的为  (  )
①函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;
②函数y=|f(x)|是以2为周期的周期函数;
③函数y=f(|x|)在(k,k+1)(k∈Z)上单调递增;
④当x∈(-1,0)时,f(x)=-log2(1-x).
A.①②④B.②③C.①④D.①②③④

分析 根据奇函数的性质和f(1+x)=-f(1-x),求出函数的周期,再由所给的解析式和周期性,求出函数在一个周期性的解析式,再画出函数在R上的图象,由图象进行逐一判断.

解答 解:令x取x+1代入f(1+x)=-f(1-x)得,f(x+2)=-f(-x)
∵函数y=f(x)为奇函数,∴f(x+2)=f(x),则函数是周期为2的周期函数,
设0<x<1,则2<x+2<3,
∵当x∈(2,3)时,f(x)=log2(x-1),
∴f(x)=f(x+2)=log2(x+1),
设-1<x<-0,则0<-x<1,
由f(x)=-f(-x)得,f(x)=-log2(-x+1),
根据奇函数的性质和周期函数的性质画出函数的图象:

由上图得,函数y=f(x)的图象关于点(k,0)(k∈Z)成中心对称;
且函数y=|f(x)|的图象是将y=f(x)的图象在x轴下方的部分沿x轴对称过去,其他不变,
则函数y=|f(x)|是以2为周期的周期函数;
故①②④正确,
而函数y=f(|x|)=$\left\{\begin{array}{l}{f(x)\;\;x≥0}\\{f(-x)\;\;\;\;\;x<0}\end{array}\right.$,则图象如下图:

由图得,图象关于y轴对称,故y=f(|x|)在(k,k+1)( k∈Z)上不是单调递增的,
故③不正确,
故选:A.

点评 本题考查了抽象函数的奇偶性、周期性的综合应用,以及对数函数的图象,考查了数形结合思想和转化能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-2ax+5,(a∈R).
(1)求函数f(x)在[-2,2]上的最小值g(a)的表达式
(2)若函数f(x)在区间(-∞,2]上是单调递减的,且对于任意的x1、x2∈[1,a+1],总有|f(x1)-
    f(x2)|≤4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=$\frac{{-{2^x}+m}}{{{2^{x+1}}+n}}$(m>0,n>0).
(1)若f(x)是奇函数,求m与n的值;
(2)在(1)的条件下,求不等式$f[{f(x)}]+f(\frac{1}{4})<0$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平行六面体ABCD-A1B1C1D1中,AB=5,AD=3,AA1=7,∠CBA=120°,∠BAA1=∠DAA1=45°,则AC1的长等于(  )
A.83B.$\sqrt{83}$C.98$+56\sqrt{2}$D.$\sqrt{98+56\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(4a-3)x+5-4a(x<1)}\\{lo{g}_{a}(x-\frac{1}{2})(x≥1)}\end{array}\right.$是R上的减函数,那么a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{3}{4}$]C.[$\frac{\sqrt{2}}{2}$,$\frac{3}{4}$]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某空间几何体的三视图如图所示,则此几何体的体积为(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某班的课桌分4个大组摆放,每大组课桌数相同,甲、乙均为该班学生,则甲、乙两人的课桌在同一大组的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某果园现有100棵果树,平均每一棵树结600个果子.根据经验估计,每多种一棵树,平均每棵树就会少结5个果子.设果园增种x棵果树,果园果子总个数为y个,则果园里增种10棵果树,果子总个数最多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=$\frac{1}{2}$x2-2x,g(x)=logax(a>0,a≠1),若h(x)=f(x)+g(x)(0,+∞)上增函数,且h′(x)存在零点.
(1)求a的值;
(2)设A(x1,y1),B(x2,x2)(x1<x2)为y=g(x)的图象上的两点,且g′(x0)=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$,求证:x0∈(x1,x2

查看答案和解析>>

同步练习册答案