精英家教网 > 高中数学 > 题目详情
19.某校新生分班,现有A,B,C三个不同的班,两名关系不错的甲和乙同学会被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{5}{3}$D.$\frac{3}{4}$

分析 利用列举法求出甲乙两同学分班的所有情况和符合条件的各种情况,由此能求出这两名同学被分到同一个班的概率.

解答 解:甲乙两同学分班共有以下情况:
(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),
其中符合条件的有三种,
所以这两名同学被分到同一个班的概率为p=$\frac{3}{9}=\frac{1}{3}$.
故选:A.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点.且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(1)求证:不论λ取何值,总有EF∥平面BCD;
(2)求证:不论λ取何值,总有平面BEF⊥平面ABC;
(3)是否存在λ,使得平面BEF⊥平面ACD?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,则$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.△ABC中,A>B是sinA>sinB的充分必要条件
C.命题“若a=-1,则f(x)=ax2+2x-1只有一个零点”的逆命题为真
D.设命题p:?x>0,x2>2x,则¬p:?x0≤0,x02≤2x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某正三棱柱(底面是正三角形的直棱柱)的正视图和俯视图如图所示.若它的体积为2$\sqrt{3}$,则它的侧视图面积为(  )
A.2$\sqrt{3}$B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是一个几何体的三视图,若它的体积是$\frac{2}{3}$,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别是a,b,c,且a2=3bc.
(Ⅰ)若sinA=sinC,求cosA;
(Ⅱ)若a=3,求△ABC的周长的最小值..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出以下结论:
①直线l1,l2的倾斜角分别为α1,α2,若l1⊥l2,则|α12|=90°;
②对任意角θ,向量$\overrightarrow{e_1}$=(cosθ,sinθ)与$\overrightarrow{e_2}$=(cosθ-$\sqrt{3}$sinθ,$\sqrt{3}$cosθ+sinθ)的夹角为$\frac{π}{3}$;
③若△ABC满足$\frac{a}{cosB}$=$\frac{b}{cosA}$,则△ABC一定是等腰三角形;
④对任意的正数a,b,都有1<$\frac{{\sqrt{a}+\sqrt{b}}}{{\sqrt{a+b}}}$≤$\sqrt{2}$.
其中错误结论的编号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={x|3≤x<7},B={x|2<x<10},全集为实数集R
(1)求A∪B
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有(参考数据:0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步练习册答案