精英家教网 > 高中数学 > 题目详情
1.已知命题P:?x0∈R,sinx0+cosx0=$\sqrt{3}$;命题q:函数f(x)=x${\;}^{\frac{1}{2}}$-($\frac{1}{2}$)x有一个零点,则下列命题为真命题的是(  )
A.p∧qB.p∨qC.¬qD.p∧(¬q)

分析 推导出命题P:?x0∈R,sinx0+cosx0=$\sqrt{3}$是假命题,命题q:函数f(x)=x${\;}^{\frac{1}{2}}$-($\frac{1}{2}$)x有一个零点是真命题,从而P∨q是真命题.

解答 解:∵sinx0+cosx0=$\sqrt{2}$sin(${x}_{0}+\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
∴命题P:?x0∈R,sinx0+cosx0=$\sqrt{3}$是假命题,
∵命题q:函数f(x)=x${\;}^{\frac{1}{2}}$-($\frac{1}{2}$)x有一个零点,
由幂函数与指数函数的图象得命题q是真命题,
∴P∨q是真命题.
故选:B.

点评 本题考查复合命题是真命题的判断,考查三角函数、幂函数与指数函数等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设F1,F2分别是椭圆$\frac{x^2}{m}+\frac{y^2}{3}=1$的两个焦点,P是第一象限内该椭圆上一点,且$\frac{{sin∠P{F_1}{F_2}+sin∠P{F_2}{F_1}}}{{sin∠{F_1}P{F_2}}}=2$,则正数m的值为4或$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的定义域为[0,2],则函数g(x)=$\frac{f(2x)}{x-1}$的定义域为(  )
A.[0,1)∪(1,4]B.[0,1)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且F2为抛物线C2:y2=2px的焦点,C2的准线l被C1和圆x2+y2=a2截得的弦长分别为2$\sqrt{2}$和4,求C1和C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…$\frac{1}{n×(n+1)}$,…,Sn为数列的前n项和
(1)计算S1,S2,S3,S4并猜想计算Sn的公式
(2)用数学归纳法证明(1)的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y都是正数,且x+y=3,则$\frac{4}{x+1}+\frac{1}{y+1}$的最小值为$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一组数据如表:
x12345
y1.31.92.52.73.6
(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在(0,+∞)上的函数y=f(x)的反函数为y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$为奇函数,则f-1(x)=2的解为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=e|x|-cosx的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案