分析 (1)计算S1,S2,S3,S4的值,根据规律猜想Sn;
(2)先验证n=1猜想成立,假设n=k猜想成立,再推导n=k+1猜想成立即可.
解答 解:(1)S1=$\frac{1}{1×2}$=$\frac{1}{2}$,S2=$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{2}{3}$,
S3=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{3}{4}$,S4=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$,
猜想:Sn=$\frac{n}{n+1}$.
(2)显然n=1时,猜想成立;
假设n=k(k≥1)时猜想成立,即Sk=$\frac{k}{k+1}$,
∴Sk+1=Sk+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$=$\frac{{k}^{2}+2k+1}{(k+1)(k+2)}$=$\frac{k+1}{k+2}$.
∴当n=k+1时猜想成立.
∴对任意n∈N+,猜想都成立.
点评 本题考查了数学归纳法证明,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{2}$ | B. | $3\sqrt{3}$ | C. | 18 | D. | 27 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直角三角形 | B. | 等腰三角形 | C. | 等边三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+11y+38=0 | B. | 2x+11y-38=0 | C. | 2x-11y-38=0 | D. | 2x-11y+16=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0} | B. | {0,1} | C. | {0,-3} | D. | {0,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∨q | C. | ¬q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}$ | B. | $2\sqrt{7}$ | C. | $2\sqrt{3}$ | D. | $2\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com