精英家教网 > 高中数学 > 题目详情
5.若正实数x,y满足2x+y=2,则$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$的最小值是$\frac{4}{5}$.

分析 根据题意,由分式的运算性质分析可得$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=$\frac{9}{y+1}$+$\frac{16}{2(x+1)}$-9,又由2x+y=2,则有2(x+1)+(y+1)=5,进而分析可得$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=($\frac{9}{y+1}$+$\frac{16}{2(x+1)}$)$\frac{(2x+2)+(y+1)}{5}$-9=$\frac{1}{5}$(16+9+$\frac{18(x+1)}{y+1}$+$\frac{8(y+1)}{x+1}$)-9,由基本不等式的性质计算可得答案.

解答 解:根据题意,若2x+y=2,
则$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=$\frac{(2-y)^{2}}{y+1}$+$\frac{(2-2x)^{2}}{2(x+1)}$=$\frac{[(y+1)-3]^{2}}{y+1}$+2$\frac{[(x+1)-2]^{2}}{x+1}$=(y+1)+$\frac{9}{y+1}$+2(x+1)+$\frac{16}{2(x+1)}$-14=$\frac{9}{y+1}$+$\frac{16}{2(x+1)}$-9;
又由2x+y=2,则有2(x+1)+(y+1)=5,
则$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$=($\frac{9}{y+1}$+$\frac{16}{2(x+1)}$)$\frac{(2x+2)+(y+1)}{5}$-9=$\frac{1}{5}$(16+9+$\frac{18(x+1)}{y+1}$+$\frac{8(y+1)}{x+1}$)-9≥$\frac{1}{5}$(25+2$\sqrt{\frac{18(x+1)}{y+1}×\frac{8(y+1)}{x+1}}$)-9≥$\frac{4}{5}$;
当且仅当y+1=2(x+1)=$\frac{5}{2}$时,等号成立;
即$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$的最小值是$\frac{4}{5}$;
故答案为:$\frac{4}{5}$.

点评 本题考查基本不等式的性质及应用,关键是根据分式的运算性质,配凑基本不等式的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知下列各式:①f(|x|+1)=x2+1; ②$f(\frac{1}{{{x^2}+1}})=x$;③f(x2-2x)=|x|; ④f(|x|)=3x+3-x.其中存在函数f(x)对任意的x∈R都成立的是(  )
A.①④B.③④C.①②D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…$\frac{1}{n×(n+1)}$,…,Sn为数列的前n项和
(1)计算S1,S2,S3,S4并猜想计算Sn的公式
(2)用数学归纳法证明(1)的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一组数据如表:
x12345
y1.31.92.52.73.6
(1)画出散点图;
(2)根据下面提供的参考公式,求出回归直线方程,并估计当x=8时,y的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax3-2x2+1,若f(x)存在唯一的零点x0,且x0<0,则实数a的取值范围为(  )
A.(2,+∞)B.(0,$\frac{\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义在(0,+∞)上的函数y=f(x)的反函数为y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$为奇函数,则f-1(x)=2的解为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个递增的等差数列{an}的前三项的和为-3,前三项的积为8.数列$\{\frac{b_n}{a_n}\}$的前n项和为${S_n}={2^{n+1}}-2$.
(1)求数列{an}的通项公式.
(2)求数列$\{\frac{b_n}{a_n}\}$的通项公式.
(3)是否存在一个等差数列{cn},使得等式${b_n}={c_{n+1}}•{2^{n+1}}-{c_n}•{2^n}$对所有的正整数n都成立.若存在,求出所有满足条件的等差数列{cn}的通项公式,并求数列{bn}的前n项和Tn;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=aln(x-a)-\frac{1}{2}{x^2}+x$(a<0).
(Ⅰ)当a=-3时,求f(x)的单调递减区间;
(Ⅱ)若函数f(x)有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设某物体一天中的温度T是时间t的函数,已知T(t)=t3+at2+bt+c,其中温度的单位是℃,时间的单位是小时,规定中午12:00相应的t=0,中午12:00以后相应的t取正数,中午12:00以前相应的t取负数(例如早上8:00对应的t=-4,下午16:00相应的t=4),若测得该物体在中午12:00的温度为60℃,在下午13:00的温度为58℃,且已知该物体的温度在早上8:00与下午16:00有相同的变化率.
(1)求该物体的温度T关于时间t的函数关系式;
(2)该物体在上午10:00至下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?

查看答案和解析>>

同步练习册答案