精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足a1=2,an+1=-$\frac{1}{{a}_{n}+1}$,则a2016等于(  )
A.-$\frac{3}{2}$B.-$\frac{1}{3}$C.1D.2

分析 由已知求出数列前几项,得到数列周期,则答案可求.

解答 解:由a1=2,an+1=-$\frac{1}{{a}_{n}+1}$,得
${a}_{2}=-\frac{1}{3}$,
${a}_{3}=-\frac{3}{2}$,
a4=2,…
由上可知,数列{an}是周期为3的周期数列,
则${a}_{2016}={a}_{671×3+3}={a}_{3}=-\frac{3}{2}$.
故选:A.

点评 本题考查数列递推式,考查了数列的函数特性,关键是对数列周期的发现,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+lnx-ax.
(1)当a=3时,求f(x)的单调增区间;
(2)若f(x)在(0,1)上是增函数,求a得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加一次抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:取到标有“生”“意”“兴”“隆”字的球则为中奖.
(Ⅰ)求获得中奖的概率;
(Ⅱ)设摸球次数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设{an}是等差数列,a1+a3+a5=9,a6=9,则这个数列的前8项和等于(  )
A.12B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,设D是图中边长分别为1和2的矩形区域,E是D内位于直线6x+2y-7=0图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为$\frac{13}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,最小值为2的是(  )
A.$y=x+\frac{1}{x}$B.$y=lgx+\frac{1}{lgx}(1<x<10)$
C.$y=sinx+\frac{2}{sinx}(0<x<\frac{π}{2})$D.y=3x+3-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+$\frac{2a}{x}$(x>0),a∈R.
(1)若a=1,求函数f(x)在区间[$\frac{1}{2}$,2]上的最小值;
(2)若函数h(x)=xf(x)-6x2+9的极小值不大于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“数列{an}为等比数列”是“an=3n(n∈N*)的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.刚刚结束的奥运会女排决赛,中国队3:1战胜塞尔维亚队,勇夺冠军,这场比赛吸引了大量观众进入球迷吧看现场直播,不少是女球迷,根据某体育球迷社区统计,在“球色伊人”球迷吧,共有40名球迷观看,其中20名女球迷;在“铁汉柔情”球迷吧,共有30名球迷观看,其中10名是女球迷.
(Ⅰ)从两个球迷吧当中所有的球迷中按分层抽样方法抽取7个球迷做兴趣咨询.
①在“球色伊人”球迷吧男球迷中抽取多少个?
②若从7个球迷中抽取两个球迷进行咨询,求这两个球迷恰来自于不同球迷吧且均属女球迷的概率;
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)根据以上数据,能否有85%的把握认为男球迷或女球迷进球迷吧观看比赛的动机与球迷吧取名有关?

查看答案和解析>>

同步练习册答案