精英家教网 > 高中数学 > 题目详情
已知a,b,c分别为△ABC三个内角A,B,C的对边,sinC(sinB-sinC)=sin2B-sin2A
(1)求A;
(2)若△ABC的面积为
5
3
4
,b+c=6,求a.
考点:余弦定理,正弦定理
专题:计算题,解三角形
分析:(1)运用正弦定理,化角为边,再由余弦定理可得A;
(2)由面积公式和余弦定理,计算即可得到a.
解答: 解:(1)由sinC(sinB-sinC)=sin2B-sin2A及正弦定理得
bc-c2=b2-a2即b2+c2-a2=bc,由余弦定理得cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

由0<A<π,则A=
π
3

(2)△ABC的面积S=
1
2
bcsinA=
5
3
4
,即
3
2
bc=
5
3
2

可得bc=5,又b+c=6,
则a2=b2+c2-2bccosA=(b+c)2-3bc=21,
则a=
21
点评:本题考查正弦定理、余弦定理和面积公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=2 -(m-x)2的最大值为m,则函数f(x)的单调增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
p
=(sinA,cosA),
q
=(
3
cosA,-cosA)
(其中
q
0
)

(1)若0<A<
π
2
,方程
p
q
= t-
1
2
(t∈R)有且仅有一解,求t的取值范围;
(2)设△ABC的内角A,B,C的对应边分别是a,b,c,且a=
3
2
,若
p
q
,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x-
3x
的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l⊥平面α,直线m?平面β,有下列四个命题:
①若α∥β,则l⊥m;
②若α⊥β,则l∥m;
③若l∥m,则α⊥β;
④若l⊥m,则α∥β.
以上命题中,正确命题的序号是(  )
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若凼数y=a-bsinx(b>0)的最大值为
3
2
,最小值为-
1
2
,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线y=kx(k>0)与函数y=x2的图象交于点O,P,过P作PA⊥x轴于A.在△OAP中任取一点,则该点落在阴影部分的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=asinx+blog2(x+
x2+1
)+4(a、b为常数),若f(x)在(0,+∞)上有最小值-4,则f(x)在(-∞,0)上有(  )
A、最大值-2
B、最大值 4
C、最大值10
D、最大值12

查看答案和解析>>

科目:高中数学 来源: 题型:

某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲、乙、丙三个公司面试的概率分别为
2
3
、p1、p2,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=3)=
1
6
,且E(X)=
5
3
,则p1+p2=
 

查看答案和解析>>

同步练习册答案