精英家教网 > 高中数学 > 题目详情
函数f(x)=asinx+blog2(x+
x2+1
)+4(a、b为常数),若f(x)在(0,+∞)上有最小值-4,则f(x)在(-∞,0)上有(  )
A、最大值-2
B、最大值 4
C、最大值10
D、最大值12
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用
分析:令F(x)=f(x)-4=asinx+blog2(x+
x2+1
),从而可判断函数为奇函数,从而求得函数的最值.
解答: 解:令F(x)=f(x)-4=asinx+blog2(x+
x2+1
),
则F(-x)=asin(-x)+blog2(-x+
x2+1
),
=-(asinx+blog2(x+
x2+1
))=-F(x);
∵f(x)在(0,+∞)上有最小值-4,
∴F(x)在(0,+∞)上有最小值-8;
∴F(x)在(-∞,0)上有最大值8;
故f(x)在(-∞,0)上有最大值8+4=12;
故选D.
点评:本题考查了函数的性质的判断与函数的性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其正视图是直角三角形,侧视图是等腰三角形,俯视图是半圆.
(1)求该几何体的体积;
(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,sinC(sinB-sinC)=sin2B-sin2A
(1)求A;
(2)若△ABC的面积为
5
3
4
,b+c=6,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
-2≤2x-y≤2
-2≤2x+y≤2
围成的区域为Ω,能够把区域Ω的周长和面积同时分为相等两部分的曲线为(  )
A、y=x3-3x+1
B、y=xsin2x
C、y=ln
2-x
2+x
D、y=
1
4
(ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1,A2是双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的上、下顶点,F是上焦点,B(-b,0),若在线段BF上(不含端点)存在不同的两点P,Q,使得△PA1A2,△QA1A2都是以A1A2为斜边的直角三角形,则双曲线离心率的取值范围为(  )
A、(1,
5
+1
2
B、(1,
2
C、(
5
+1
2
,+∞)
D、(
2
5
+1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若球的表面积为4π,则球的体积为(  )
A、
1
3
π
B、
4
3
π
C、
8
3
π
D、
32
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数k,直线kx-y-3k+4=0与圆C:(x-3)2+(y-4)2=16的位置关系是(  )
A、相交B、相切
C、相离D、与k取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4名男生、4名女生排成一排,求:
(1)男女相间有多少种排法?
(2)女生在一起有多少种排法?
(3)男生甲、乙不相邻有多少种排法?

查看答案和解析>>

科目:高中数学 来源: 题型:

某联欢晚会矩形抽奖活动,举办方设置了甲乙两种抽奖方案,方案甲的中奖率为
2
3
,中奖可以获得2分,方案乙的中奖率为
2
5
,中奖可以得3分,未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲,小红选择方案乙,记他们的累计得分为X,求X<4的概率;
(2)若小明小红两人选择同一方案抽奖,问:他们选择何种方案抽奖,累计得分的数学期望最大?

查看答案和解析>>

同步练习册答案