分析 (1)根据题意可得a2+b2=4,得到a和b的关系,把点P($\sqrt{3}$,1)代入双曲线方程,求得a,进而根据a2+b2=4求得b,双曲线方程可得;
(2)可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,根据直线I与双曲线C相交于不同的两点E、F,进而可得k的范围,设E(x1,y1),F(x2,y2),根据韦达定理可求得x1+x2和x1x2,进而表示出|EF|和原点O到直线l的距离根据三角形OEF的面积求得k,进而可得直线方程.
解答 解:(1)依题意,由c2=a2+b2=4,
得双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4-{a}^{2}}$=1(0<a2<4),
将点($\sqrt{3}$,1)代入上式,得$\frac{3}{{a}^{2}}$-$\frac{1}{4-{a}^{2}}$=1.
解得a2=2或a2=6(舍去),
故所求双曲线方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1;
(2):依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线I与双曲线C相交于不同的两点E、F,
∴$\left\{\begin{array}{l}{1-{k}^{2}≠0}\\{△=(-4k)^{2}+4×6(1-{k}^{2})>0}\end{array}\right.$?$\left\{\begin{array}{l}{k≠±1}\\{-\sqrt{3}<k<\sqrt{3}}\end{array}\right.$∴k∈(-$\sqrt{3}$,-1)∪(1,$\sqrt{3}$).
设E(x1,y1),F(x2,y2),则由①式得x1+x2=$\frac{4k}{1-{k}^{2}}$,x1x2=-$\frac{6}{1-{k}^{2}}$,
于是,|EF|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4k}{1-{k}^{2}})^{2}+\frac{24}{1-{k}^{2}}}$,
而原点O到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$,
∴S△OEF=$\frac{1}{2}$d•|EF|=$\frac{1}{2}$•$\frac{2}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4k}{1-{k}^{2}})^{2}+\frac{24}{1-{k}^{2}}}$=$\frac{2\sqrt{2}•\sqrt{3-{k}^{2}}}{|1-{k}^{2}|}$,
若S△OEF=$\frac{2\sqrt{2}•\sqrt{3-{k}^{2}}}{|1-{k}^{2}|}$=2$\sqrt{2}$?k4-k2-2=0,
解得k=±$\sqrt{2}$,满足判别式大于0.
故满足条件的直线l有两条,其方程分别为y=$\sqrt{2}$x+2和y=-$\sqrt{2}$x+2.
点评 本题主要考查了双曲线的方程和双曲线与直线的关系.考查了学生综合运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 18 | C. | 20 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com