精英家教网 > 高中数学 > 题目详情
8.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两个焦点为F1(-2,0)、F2(2,0)点P($\sqrt{3}$,1)在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2$\sqrt{2}$,求直线l的方程.

分析 (1)根据题意可得a2+b2=4,得到a和b的关系,把点P($\sqrt{3}$,1)代入双曲线方程,求得a,进而根据a2+b2=4求得b,双曲线方程可得;
(2)可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,根据直线I与双曲线C相交于不同的两点E、F,进而可得k的范围,设E(x1,y1),F(x2,y2),根据韦达定理可求得x1+x2和x1x2,进而表示出|EF|和原点O到直线l的距离根据三角形OEF的面积求得k,进而可得直线方程.

解答 解:(1)依题意,由c2=a2+b2=4,
得双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4-{a}^{2}}$=1(0<a2<4),
将点($\sqrt{3}$,1)代入上式,得$\frac{3}{{a}^{2}}$-$\frac{1}{4-{a}^{2}}$=1.
解得a2=2或a2=6(舍去),
故所求双曲线方程为$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1;
(2):依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线I与双曲线C相交于不同的两点E、F,
∴$\left\{\begin{array}{l}{1-{k}^{2}≠0}\\{△=(-4k)^{2}+4×6(1-{k}^{2})>0}\end{array}\right.$?$\left\{\begin{array}{l}{k≠±1}\\{-\sqrt{3}<k<\sqrt{3}}\end{array}\right.$∴k∈(-$\sqrt{3}$,-1)∪(1,$\sqrt{3}$).
设E(x1,y1),F(x2,y2),则由①式得x1+x2=$\frac{4k}{1-{k}^{2}}$,x1x2=-$\frac{6}{1-{k}^{2}}$,
于是,|EF|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4k}{1-{k}^{2}})^{2}+\frac{24}{1-{k}^{2}}}$,
而原点O到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$,
∴S△OEF=$\frac{1}{2}$d•|EF|=$\frac{1}{2}$•$\frac{2}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{4k}{1-{k}^{2}})^{2}+\frac{24}{1-{k}^{2}}}$=$\frac{2\sqrt{2}•\sqrt{3-{k}^{2}}}{|1-{k}^{2}|}$,
若S△OEF=$\frac{2\sqrt{2}•\sqrt{3-{k}^{2}}}{|1-{k}^{2}|}$=2$\sqrt{2}$?k4-k2-2=0,
解得k=±$\sqrt{2}$,满足判别式大于0.
故满足条件的直线l有两条,其方程分别为y=$\sqrt{2}$x+2和y=-$\sqrt{2}$x+2.

点评 本题主要考查了双曲线的方程和双曲线与直线的关系.考查了学生综合运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{ax+b}{1+{x}^{2}}$是定义在区间(-1,1)上的奇函数,且f(2)=$\frac{2}{5}$,
(1)确定函数f(x)的解析式;
(2)用定义法证明f(x)在区间(-1,1)上是增函数;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题:①设m∈R,命题“若a>b,则am2>bm2”的逆否命题为假命题;②命题p:?α,β∈R,tan(α+β)=tanα+tanβ的否定¬p:?α,β∈R,tan(α+β)≠tanα+tanβ;③设a,b为空间任意两条直线,则“a∥b”是“a与b没有公共点”的充要条件.其中正确的是(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过P(2,0)且与直线x-2y+3=0平行的直线方程为2y-x+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数的导函数.
(1)f(x)=2lnx
(2)f(x)=$\frac{e^x}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=2px的焦点F作直线l交抛物线于A,B两点,O为坐标原点,则△OAB的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在y=3x,y=log0.3x,y=x3,y=$\sqrt{x}$,这四个函数中当0<x1<x2<1时,使f$(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$恒成立的函数的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则z=16a2+4a+b2+b的最小值是(  )
A.12B.18C.20D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线y=x2,x=0,y=1,所围成的图形的面积为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案