精英家教网 > 高中数学 > 题目详情
11.复数$\frac{2i}{1-i}$的共轭复数是(  )
A.1+iB.-1+iC.1-iD.-1-i

分析 直接利用复数代数形式的乘除运算化简,然后求其共轭得答案.

解答 解:∵$\frac{2i}{1-i}=\frac{{2i({1+i})}}{{({1-i})({1+i})}}=\frac{2i-2}{2}=-1+i$,
∴$\overline{z}=-1-i$,
故选:D.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.命题“任意的x∈R,都有x2≥0成立”的否定是(  )
A.任意的x∈R,都有x2≤0成立B.任意的x∈R,都有x2<0成立
C.存在x0∈R,使得x${\;}_{0}^{2}$≤0成立D.存在x0∈R,使得x${\;}_{0}^{2}$<0成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要得到函数y=$\sqrt{3}$sin2x+cos2x的图象,只需将函数y=2sin2x的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}$(α为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标$(2\sqrt{2},\frac{3π}{4})$,判断点P与直线l的位置关系;
(Ⅱ)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正三角形ABC的边长为2,点D,E分别在边AB,AC上,且$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,$\overrightarrow{AE}$=λ $\overrightarrow{AC}$.若点F为线段BE的中点,点O为△ADE的重心,则$\overrightarrow{OF}$•$\overrightarrow{CF}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=|2x-1|,实数a<b,且f(a)=f(b),则a+b的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数 f(x)=4$\sqrt{3}sinxcosx-4{sin^2}$x+1
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,内角A,B,C所对边分别为a,b,c,a=2,若对任意的x∈R不等式f(x)≤f(A)恒成立,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的圆心C的极坐标为($\sqrt{2}$,$\frac{π}{4}$),半径r=$\sqrt{2}$.直线y=$\sqrt{3}$x与圆C交于两点,求两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.a3-b3=(a-b)(a2+ab+b2).

查看答案和解析>>

同步练习册答案