精英家教网 > 高中数学 > 题目详情
19.在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}$(α为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标$(2\sqrt{2},\frac{3π}{4})$,判断点P与直线l的位置关系;
(Ⅱ)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

分析 (Ⅰ)首先把点的极坐标转化成直角坐标,进一步利用点和方程的关系求出结果.
(Ⅱ)进一步利用点到直线的距离,利用三角函数关系式的恒等变换,把函数关系式变形成余弦型函数,进一步求出最值.

解答 解:(Ⅰ)把极坐标系下的点$P(2\sqrt{2},\frac{3π}{4})$化为直角坐标,得P(-2,2).…(1分)
因为点P的直角坐标(-2,2)满足直线l的方程x-y+4=0,
所以点P在直线l上.…(3分)
(II)因为点Q在曲线C上,故可设点Q的坐标为$(\sqrt{3}cosα,sinα)$,…(4分)
从而点Q到直线l的距离为$d=\frac{|\sqrt{3}cosα-sinα+4|}{\sqrt{2}}$=$\frac{2cos(α+\frac{π}{6})+4}{\sqrt{2}}$
=$\sqrt{2}cos(α+\frac{π}{6})+2\sqrt{2}$,…(6分)
由此得,当$cos(α+\frac{π}{6})=-1$时,d取得最小值$\sqrt{2}$.…(10分)

点评 本题考查的知识要点:极坐标和直角坐标的互化,点到直线的距离的公式的应用,三角函数的最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=1前n项和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求证:b1+b2+…+bn>$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间(0,4)内任取两个实数,如果每个实数被取到的概率相等,那么取出的两个实数的和大于2 的概率等于$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x-8sin4$\frac{x}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数y=f(2x-$\frac{π}{3}$)在x$∈[-\frac{π}{6},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四面体P-ABC中,PA=PB=PC=1,∠APB=∠BPC=∠CPA=90°,则该四面体P-ABC的外接球的表面积为(  )
A.πB.$\sqrt{3}$πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$,则目标函数z=x-2y的最小值是(  )
A.0B.-6C.-8D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数$\frac{2i}{1-i}$的共轭复数是(  )
A.1+iB.-1+iC.1-iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=cos(2x+φ)的图象沿x轴向右平移$\frac{π}{6}$后,得到的图象关于原点对称,则φ的一个可能取值为(  )
A.-$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增,当x>0时,f(x)的图象如图所示;若x•[f(x)-f(-x)]<0,则x的取值范围是(-3,0)∪(0,3).

查看答案和解析>>

同步练习册答案