精英家教网 > 高中数学 > 题目详情
8.将函数y=cos(2x+φ)的图象沿x轴向右平移$\frac{π}{6}$后,得到的图象关于原点对称,则φ的一个可能取值为(  )
A.-$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 由条件根据y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,求得φ的值,可得结论.

解答 解:将函数y=cos(2x+φ)的图象沿x轴向右平移$\frac{π}{6}$后,
得到的图象对应的解析式为y=cos[2(x-$\frac{π}{6}$)+φ]=cos(2x-$\frac{π}{3}$+φ).
再根据得到的图象关于原点对称,则-$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈z,
即φ=kπ+$\frac{5π}{6}$,k∈z.
结合所给的选项,
故选:D.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}$(α为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标$(2\sqrt{2},\frac{3π}{4})$,判断点P与直线l的位置关系;
(Ⅱ)设点Q为曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=|2x-1|,实数a<b,且f(a)=f(b),则a+b的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数 f(x)=4$\sqrt{3}sinxcosx-4{sin^2}$x+1
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,内角A,B,C所对边分别为a,b,c,a=2,若对任意的x∈R不等式f(x)≤f(A)恒成立,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,设抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l1交抛物线C于A,B两点,且|AB|=8,线段AB的中点到y轴的距离为3.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l2与圆x2+y2=$\frac{1}{2}$切于点P,与抛物线C切于点Q,求△FPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的圆心C的极坐标为($\sqrt{2}$,$\frac{π}{4}$),半径r=$\sqrt{2}$.直线y=$\sqrt{3}$x与圆C交于两点,求两点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x、y满足不等式组$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{3x-y+1≥0}\end{array}\right.$,求z=2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a=sin(π-$\frac{π}{6}$),则函数y=tanax的最小周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步练习册答案