分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.![]()
由$\left\{\begin{array}{l}{x=1}\\{3x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$,即A(1,4),
代入目标函数z=2x+y得z=2×1+4=6.
即目标函数z=2x+y的最大值为6.
当直线y=-2x+z经过点B时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{x+y-1=0}\\{3x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即B(0,1),
代入目标函数z=2x+y得z=2×0-1=-1.
即目标函数z=2x+y的最小值为-1.
目标函数z=2x+y的取值范围是[-1,6].
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z<x<y | B. | x<y<z | C. | y<x<z | D. | x<z<y |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com