精英家教网 > 高中数学 > 题目详情
如图,已知三棱锥ABC-A1B1C1中,底面ABC是正三角形,侧棱AA1⊥底面ABC,D是BC的中点,AA1=AB=1.
(1)求证:平面AB1D⊥平面B1BCC1
(2)求证:A1C∥平面AB1D.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)依题意,易证AD⊥平面BCC1B1,利用面面垂直的性质定理即可证;
(2)取C1B1的中点E,连接A1E,ED,易证平面A1EC∥平面AB1D,利用面面平行的性质即可证得A1C∥平面AB1D.
解答: 证明:(1)∵ABC-A1B1C1为三棱柱,D是BC中点,AA1⊥平面ABC,AD?平面ABC,
∴AA1⊥AD;
又AA1∥BB1
∴AD⊥BB1
又底面ABC为正三角形,D是BC中点,
∴AD⊥BC,而BC∩BB1=B,
∴AD⊥平面BCC1B1
∵B1D?平面AB1D
∴平面AB1D⊥平面B1BCC1
(2))取C1B1的中点E,连接A1E,ED,

则B1E∥DC,B1E=DC
∴四边形B1DCE为平行四边形,于是有B1D∥EC,又A1E∥AD,B1D∩AD=D,A1E∩EC=E,
∴平面A1EC∥平面AB1D,A1C?平面A1EC,
∴A1C∥平面AB1D.
点评:本题考查直线与平面垂直的性质,考查面面平行的性质,(2)中证得平面A1EC1∥平面AB1D是关键,考查作图、推理与证明的逻辑思维能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

按规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间.属酒后驾车:在800mg/100mL(含80)以上时,属醉酒驾车.某市交警在某路段的一次拦查行动中,依法检查了250辆机动车,查处酒后驾车的驾驶员20人,如图是对这20人血液中酒精含量进行检查所得结果的频率分布直方图.
(1)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.
(2)从血液酒精浓度在[70,90)范围内的驾驶员中任抽取3人,记所抽取的3人中属于醉酒驾车的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,存在常数A,B,C使得an+Sn=An2+Bn+C对任意正整数n都成立.
(Ⅰ)若A=0,B=1,C=2,设bn=an-1,求数列{nbn}的前n项和Tn
(Ⅱ)若C=0,{an}是首项为1的等差数列,设cn=
1+
1
an2
+
1
an+12
,数列{cn}的前2014项和为P,求不超过P的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax-1(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数F(x)=xlnx-f(x)在定义域内存在零点,求a的最大值.
(Ⅲ)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取随范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx.
(1)当b=a-1时,讨论f(x)的单调性;
(2)当a=0时,若函数f(x)有两个不同的零点,求b的取值范围;
(3)在(2)的条件下,设x1、x2为函数f(x)的两个不同的零点.求证:x1x2>e2(e为自然对数的底).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a2=
1
2
,当n≥2时,an+1=an-
1
4
an-1
(Ⅰ)设bn=an+1-
1
2
an,证明数列{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设cn=
n-5
n
an,数列{cn}的前n项和为Sn.是否存在整数M,使得Sn≤M恒成立?若存在,求出M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内有k条直线将平面分成f(k)个区域,增加一条直线后,平面被分成的区域最多会增加
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

三段论推理:“①正方形是平行四边形,②平行四边形对边相等,③正方形对边相等,其中小前提是
 
(写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
1
3
[
1
2
2
a
+8
b
)-(4
a
-2
b
)]的结果是
 

查看答案和解析>>

同步练习册答案