分析 (1)根据条件式子,利用余弦定理求出cosA,sinA,将a=2,b+c=2$\sqrt{2}$代入条件式求出bc,代入面积公式S=$\frac{1}{2}bcsinA$求出面积;
(2)利用公式sinB=sin(A+C)得出sinC,cosC的关系,利用同角三角函数的关系解出cosC.
解答 解:(1)在△ABC中,∵3(b2+c2)=3a2+2bc,∴b2+c2-a2=$\frac{2bc}{3}$.
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$.
又b2+c2-a2=(b+c)2-2bc-a2=$\frac{2bc}{3}$,
即8-2bc-4=$\frac{2bc}{3}$,∴bc=$\frac{3}{2}$.
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{3}{2}×\frac{2\sqrt{2}}{3}$=$\frac{\sqrt{2}}{2}$.
(2)由(1)知sinA=$\frac{2\sqrt{2}}{3}$,cosA=$\frac{1}{3}$,
∴sinB=sin(A+C)=$\frac{2\sqrt{2}}{3}$cosC+$\frac{1}{3}$sinC=$\sqrt{2}$cosC,
∴$\frac{1}{3}sinC$=$\frac{\sqrt{2}}{3}cosC$,即sinC=$\sqrt{2}cosC$,
又sin2C+cos2C=1,
∴3cos2C=1,
∴cosC=$\frac{\sqrt{3}}{3}$.
点评 本题考查了余弦定理,同角三角函数的关系,三角函数的恒等变换,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | π | C. | $\frac{3π}{2}$ | D. | 2π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-x2+1 | B. | y=|x+1| | ||
| C. | y=e|x| | D. | $y=\left\{{\begin{array}{l}{2x-1,x≥0}\\{{x^3}+1,x<0}\end{array}}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com