精英家教网 > 高中数学 > 题目详情
10.某公司生产一种产品,每年需投入固定成本25万元,此外每生产100件这样的产品,还需增加投入50万元,经市场调查知这种产品年需求量为500件,产品销售数量为t件时,销售所得的收入为$(5t-\frac{1}{200}{t}^{2})$万元.
(1)该公司这种产品的年生产量为x件,生产并销售这种产品所得到的利润关于当年产量x的函数为f(x),求f(x);
(2)当该公司的年产量为多少件时,当年所获得的利润最大?

分析 (1)根据销售这种产品所得的年利润=销售所得的收入-销售成本,建立函数关系即可;
(2)利用配方法,求得0<x≤500时,$f(x)=-\frac{1}{200}{(x-450)}^{2}+\frac{1975}{2}$在x=450时取得最大值,x>500时,$f(x)<-\frac{1}{2}×500+1225=975$,即获得的利润最大.

解答 解:(1)当0<x≤500时,$f(x)=5x-\frac{1}{200}{x}^{2}-50•\frac{x}{100}-25$.
当x>500时,$f(x)=5×500-\frac{1}{200}×{500}^{2}-50×\frac{x}{100}-25$,
故$f(x)=\left\{\begin{array}{l}-\frac{1}{200}{x}^{2}+\frac{9x}{2}-250<x≤500\\-\frac{1}{2}x+1225x>500\end{array}\right.$;
(2)当0<x≤500时,$f(x)=-\frac{1}{200}{(x-450)}^{2}+\frac{1975}{2}$   
故当x=450时,${f(x)}_{max}=\frac{1975}{2}$;
当x>500时,$f(x)<-\frac{1}{2}×500+1225=975$,
故当该公司的年产量为450件时,当年获得的利润最大.

点评 本题考查了函数模型的性质与运用,考查了简单的建模思想方法,训练里利用配方法求二次函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.
(1)若a=2,b+c=2$\sqrt{2}$,求△ABC的面积S;
(2)若sinB=$\sqrt{2}$cosC,求cosC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线M:y2=12x的焦点F到双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)渐近线的距离为$\frac{3\sqrt{10}}{4}$,点P是抛物线M上的一动点,且P到双曲线C的焦点F1(0,c)的距离与到直线x=-3的距离之和的最小值为5,则双曲线C的方程为(  )
A.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1D.$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点垂直于x轴的弦长为a.则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知球O的一个内接三棱锥P-ABC,其中△ABC是边长为2的正三角形,PC为球O的直径,且PC=4,则此三棱锥的体积为(  )
A.$\frac{2}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{2}$C.$\frac{4}{3}\sqrt{6}$D.$\frac{2}{3}\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}(n∈{N^*})$,则$\frac{a_9}{{{b_1}+{b_{17}}}}+\frac{a_9}{{{b_5}+{b_{13}}}}$=$\frac{35}{66}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正三棱柱ABC-A1B1C1中,AB=AA1=1,DC=DC1,AE=ED,F为BB1上任意一点,且FB1=3BF.
(Ⅰ)求证:EF∥平面ABC;
(Ⅱ)求该三棱柱的侧面展开图的对角线长;
(Ⅲ)三棱锥B1-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,底面是直角三角形的直三棱柱ABC-A1B1C1中,$AC=BC=\frac{1}{2}A{A_1}=1$,D是棱AA1上的动点.
(1)证明:DC1⊥BC;
(2)求三棱锥C-BDC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N+).
(1)求a2,a3,a4
(2)设bn=an+1-2an,求证:{bn}是等比数列,并求{bn}的通项公式.

查看答案和解析>>

同步练习册答案