精英家教网 > 高中数学 > 题目详情
1.已知抛物线M:y2=12x的焦点F到双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)渐近线的距离为$\frac{3\sqrt{10}}{4}$,点P是抛物线M上的一动点,且P到双曲线C的焦点F1(0,c)的距离与到直线x=-3的距离之和的最小值为5,则双曲线C的方程为(  )
A.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1D.$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1

分析 求出抛物线的焦点和准线方程,运用抛物线的定义,可得当P,F,F1共线时,和|PF1|+|PF|取得最小值,且为|FF1|=5,即有c2=16,再由双曲线的渐近线方程和点到直线的距离公式可得a=$\sqrt{10}$,b=$\sqrt{6}$,进而得到双曲线的方程.

解答 解:抛物线y2=12x的焦点为F(3,0),准线方程为x=-3,
则P到双曲线C的上焦点F1(0,c)的距离
与到直线x=-3的距离之和,即为|PF1|+|PF|,
当P,F,F1共线时,和取得最小值,且为|FF1|=5,
即有c2+9=25,即有c2=16,
又F(3,0)到直线ax+by=0的距离为$\frac{3\sqrt{10}}{4}$,
即$\frac{3a}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{3a}{4}$=$\frac{3\sqrt{10}}{4}$,即a=$\sqrt{10}$,则b=$\sqrt{6}$,
则该双曲线的方程为$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1.
故选:D.

点评 本题考查抛物线的定义、方程和性质,考查双曲线的方程和性质,考查点到直线的距离公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知P为△ABC的中线AM上运动,AM=2,则$\overrightarrow{PA}•\overrightarrow{PM}$的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.焦点在x轴上,焦距为10,且与双曲线x2-$\frac{{y}^{2}}{4}$=1有相同渐近线的双曲线的标准方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是偶函数,当x>0时,$f(x)={x^{\frac{1}{3}}}$,则在(-2,0)上,下列函数中与f(x)的单调性相同的是(  )
A.y=-x2+1B.y=|x+1|
C.y=e|x|D.$y=\left\{{\begin{array}{l}{2x-1,x≥0}\\{{x^3}+1,x<0}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求证:AB1⊥BC;
(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2$\sqrt{6}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知多面体A-BCDEF中,ABCD为菱形,∠ABC=60°,AE⊥平面ABCD,AE∥CF,AB=AE=1,AF⊥BE.
(I)求证:AF⊥平面BDE;
(Ⅱ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某公司生产一种产品,每年需投入固定成本25万元,此外每生产100件这样的产品,还需增加投入50万元,经市场调查知这种产品年需求量为500件,产品销售数量为t件时,销售所得的收入为$(5t-\frac{1}{200}{t}^{2})$万元.
(1)该公司这种产品的年生产量为x件,生产并销售这种产品所得到的利润关于当年产量x的函数为f(x),求f(x);
(2)当该公司的年产量为多少件时,当年所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某几何体的三视图如图所示(其中正视图为等腰直角三角形),则该几何体的外接球的表面积为(  )
A.12πB.C.D.

查看答案和解析>>

同步练习册答案