精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 根据分段函数代值计算即可得到,各项值成周期为4重复出现,问题得以解决.

解答 解:a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,
∵a1=$\frac{4}{5}$,∴a2=2a1-1=$\frac{3}{5}$,a3=2a2-1=$\frac{1}{5}$,a4=2a3=$\frac{2}{5}$,a5=2a4=$\frac{4}{5}$,各项值成周期为4重复出现
∴an+4=an
则a2015=a4×503+3=a3=$\frac{1}{5}$,
故选:A.

点评 本题考查了数列的周期性、分段函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.不等式($\frac{1}{3}$)2x-1<3x的解集为($\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若双曲线kx2-y2=1的一个焦点的坐标是(2,0),则k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设点M(x,y),其轨迹为曲线C,若$\overrightarrow{a}$=(x-2,y),$\overrightarrow{b}$=(x+2,y),||$\overrightarrow{a}$|-|$\overrightarrow{b}$||=2,则曲线C的离心率等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线M:y2=12x的焦点F到双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)渐近线的距离为$\frac{3\sqrt{10}}{4}$,点P是抛物线M上的一动点,且P到双曲线C的焦点F1(0,c)的距离与到直线x=-3的距离之和的最小值为5,则双曲线C的方程为(  )
A.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1D.$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知四棱锥S-ABCD,底面ABCD是边长为2的棱形,∠ABC=60°,侧面SAD为正三角形,侧面SAD⊥底面ABCD,M为侧棱SB的中点,E为线段AD的中点.
(Ⅰ)求证:SD∥平面MAC;
(Ⅱ)求证:SE⊥AC;
(Ⅲ)求三棱锥M-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦点垂直于x轴的弦长为a.则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}(n∈{N^*})$,则$\frac{a_9}{{{b_1}+{b_{17}}}}+\frac{a_9}{{{b_5}+{b_{13}}}}$=$\frac{35}{66}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-(2a+1)x+alnx(a∈R).
(1)若a=1,求y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在区间[1,2]上是单调函数,求实数a的取值范围;
(3)函数g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案