精英家教网 > 高中数学 > 题目详情
11.如图,已知四棱锥S-ABCD,底面ABCD是边长为2的棱形,∠ABC=60°,侧面SAD为正三角形,侧面SAD⊥底面ABCD,M为侧棱SB的中点,E为线段AD的中点.
(Ⅰ)求证:SD∥平面MAC;
(Ⅱ)求证:SE⊥AC;
(Ⅲ)求三棱锥M-ABC的体积.

分析 (Ⅰ)连接BD交AC于O,连接MO,由三角形中位线定理可得OM∥SD,然后由线面平行的判定得答案;
(Ⅱ)由侧面SAD为正三角形,E为线段AD的中点,可得SE⊥AD,结合侧面SAD⊥底面ABCD,得SE⊥底面ABCD,则SE⊥AC;
(Ⅲ)由已知求出${S}_{△ABC}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$,再由M为SB的中点,得M到底面的距离为$\frac{\sqrt{3}}{2}$,代入三棱锥体积公式求得答案.

解答 (Ⅰ)证明:连接BD交AC于O,连接MO,
∵底面ABCD是菱形,∴O为BD的中点,又M为侧棱SB的中点,
∴OM∥SD,
又OM?面MAC,SD?面MAC,
∴SD∥平面MAC;
(Ⅱ)证明:∵SAD为正三角形,E为线段AD的中点,
∴SE⊥AD,
又侧面SAD⊥底面ABCD,且侧面SAD∩底面ABCD=AD,
∴SE⊥底面ABCD,而AC?底面ABCD,
∴SE⊥AC;
(Ⅲ)解:∵底面ABCD是边长为2的棱形,∠ABC=60°,
∴△ABC为边长是2的正三角形,则${S}_{△ABC}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$,
又△SAD为边长是2的正三角形,∴SE=$\sqrt{3}$,
由(Ⅱ)知SE⊥底面ABCD,即S到底面的距离为$\sqrt{3}$,
∵M为SB的中点,∴M到底面的距离为$\frac{\sqrt{3}}{2}$,
∴${V}_{M-ABC}=\frac{1}{3}×\sqrt{3}×\frac{\sqrt{3}}{2}=\frac{1}{2}$.

点评 本题考查直线与平面平行的判定,考查了棱锥体积的求法,考查空间想象能力和思维能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=sin(x+$\frac{π}{4}$)图象的一条对称轴是(  )
A.x轴B.y轴C.直线x=$\frac{π}{4}$D.直线x=-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:x2+2my2=1的两条渐近线互相垂直,则抛物线E:y=mx2的焦点坐标是(  )
A.(0,1)B.(0,-1)C.(0,$\frac{1}{2}$)D.(0,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为2x-y=0,则它的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a1=$\frac{4}{5}$,an+1=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}≤\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}<{a}_{n}≤1}\end{array}\right.$,则a2015=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知:如图所示,平面ABCD⊥平面CDE,BC∥AD,∠BCD=90°,CD⊥DE,AD=DC=DE=2BC=2,G,H分别是BE,CE的中点.
(1)证明:AG⊥CE;
(2)求多面体ABG-DCH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.
(1)证明:AE∥平面BCD;
(2)若△ABC为边长为2的正三角形,DE∥平面ABC,AD与BD,CD所成角的余弦值均为$\frac{{\sqrt{2}}}{4}$,求三棱锥D-BEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0.
(1)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\int\begin{array}{l}m\\ 1\end{array}$(2x-1)dx=6,则二项式(1-2x)3m的展开式各项系数和为-1.

查看答案和解析>>

同步练习册答案