精英家教网 > 高中数学 > 题目详情
10.某地震观测站对地下水位的变化和发生地震的情况进行了1700次观测,列联表如下
有震无震总计
有变化989021000
无变化82618700
总计18015201700
试问观测结果是否能说明地下水位的变化与地震的发生相关.

分析 根据列联表,计算K2,对数表即可得出结论.

解答 解:根据列联表,计算K2=$\frac{1700{×(98×618-82×902)}^{2}}{1000×700×180×1520}$≈1.954<2.072,
对照观测值表:

P(K≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
得出没有85%的把握说明地下水位的变化与地震的发生相关.

点评 本题考查了独立性检验知识及应用问题,也考查了计算能力与分析解决问题的能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.长方体ABCD-A1B1C1D1中,AA1=1,D1C与平面ABCD所成的角为30°,BC1与BC所成的角为45°,则二面角D1-AC-B的正切值为$-\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(Ⅰ)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)记甲组学生的成绩分别为x1,x2,…,x12,执行如图所示的程序框图,求输出的S的值;
(Ⅲ)竞赛中,学生小张、小李同时回答两道题,小张答对每道题的概率均为$\frac{1}{3}$,小李答对每道题的概率均为$\frac{1}{2}$,两人回答每道题正确与否相互独立.记小张答对题的道数为a,小李答对题的道数为b,X=|a-b|,写出X的概率分布列,并求出X的数学期望.

附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
独立性检验临界表:
P(K2>k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18. 2016年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于2016年3月5日和3月3日在北京开幕.为了解哪些人更关注两会,某机构随抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:[15,25),[25,35),[35,45),[55,65),[65,75].把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”和“中老年人”的人数之比为9:11.
(1)求图中a、b的值根;
(2)若“青少年人”中有15人关注两会,根据已知条件完成下面的2×2列联表,根据此统计结果能否有99%的把握认为“中老年人”比“青少年人”更加关注两会?
关注不关注合计
青少年人15
中老年人
合计5050100
附:参考公式和临界值表:
P(K2≥k00.050.010.001
k03.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.双曲线的一条渐近线方程是y=$\sqrt{3}$x,焦点是(-4,0),(4,0),则双曲线方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个运动员宿舍的门牌号是一个三位数,一天,他在门外做倒立时发现门牌号倒着看成了另一个数,而且大了693,则该运动员宿舍的门牌号应是108.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的单调递增区间可能为(  )
A.[-$\frac{5π}{12}$,$\frac{π}{6}$]B.[-$\frac{7π}{12}$,$\frac{7π}{6}$]C.[$\frac{19π}{12}$,$\frac{15π}{6}$]D.[$\frac{31π}{12}$,$\frac{37π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-$\frac{1}{3}$x3+$\frac{a}{2}$x2-2x(a∈R).
(I)当a=3时,求函数f(x)的单调区间;
(II)若过点(0,-$\frac{1}{3}$)可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知m∈R,函数f(x)=emx-1-$\frac{lnx}{x}$(e为自然对数的底数)
(1)若m=1,求函数f(x)的单调区间;
(2)若f(x)的最小值为m,求m的最小值.

查看答案和解析>>

同步练习册答案