精英家教网 > 高中数学 > 题目详情
10.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的建康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社会每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4$\sqrt{2a}$,Q=$\frac{1}{4}$a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).
(1)求f(50)的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?

分析 (1)由甲大棚投入50万元,则乙大投棚入150万元,把a的值代入即可得出.
(2)$f(x)=80+4\sqrt{2x}+\frac{1}{4}({200-x})+120=-\frac{1}{4}x+4\sqrt{2x}+250$,依题意得$\left\{\begin{array}{l}x≥20\\ 200-x≥20\end{array}\right.⇒20≤x≤180$,通过换元利用二次函数的单调性即可得出.

解答 解:(1)∵甲大棚投入50万元,则乙大投棚入150万元,
∴$f({50})=80+4\sqrt{2×50}+\frac{1}{4}×150+120=277.5$万元.
(2)$f(x)=80+4\sqrt{2x}+\frac{1}{4}({200-x})+120=-\frac{1}{4}x+4\sqrt{2x}+250$,依题意得$\left\{\begin{array}{l}x≥20\\ 200-x≥20\end{array}\right.⇒20≤x≤180$,
故$f(x)=-\frac{1}{4}x+4\sqrt{2x}+250({20≤x≤180})$.
令$t=\sqrt{x}∈[{2\sqrt{5},6\sqrt{5}}]$,则$f(x)=-\frac{1}{4}{t^2}+4\sqrt{2}t+250=-\frac{1}{4}{({t-8\sqrt{2}})^2}+282$,
当$t=8\sqrt{2}$,即x=128时,f(x)max=282万元.
所以投入甲大棚128万元,乙大棚72万元时,总收益最大,且最大收益为282万元.

点评 本题考查了函数的应用、二次函数的单调性,考查了换元方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.奇函数f(x)满足f(1)=0,且f(x)在(0,+∞)上是单调递减,则$\frac{{2}^{x}-1}{f(x)-f(-x)}$<0的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若角θ的终边过点P(3,-4),则tan(θ+π)=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在∠ABC=60°,∠C=90°,BC=40米的直角三角形地块中划出一块矩形CDEF地块进行绿化.
(1)若要使矩形地块的面积不小于300$\sqrt{3}$平方米,求CF长的取值范围;
(2)当矩形地块面积最大时,现欲修建一条道路MN,把矩形地块分成面积为1:3的两部分,且点M在边CF上,点N在边CD上,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx-bcosx(其中a,b为正实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是(  )
A.$a=\sqrt{3},b=1$
B.不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π
C.函数f(x)的图象一个对称中心为 $({\frac{2}{3}π,0})$
D.函数f(x)在区间$[{\frac{π}{6},π}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三角形ABC外接圆O的半径为1(O为圆心),且2$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=0,|$\overrightarrow{OA}$|=2|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$•$\overrightarrow{BC}$等于(  )
A.$-\frac{15}{4}$B.$-\frac{{\sqrt{15}}}{2}$C.$\frac{15}{4}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x^2}{4}$-ax+cosx(a∈R),x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(Ⅰ)若函数f(x)是偶函数,试求a的值;
(Ⅱ)当a>0时,求证:函数f(x)在(0,$\frac{π}{2}$)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合M={x|y=$\sqrt{x-3}$+$\sqrt{3-x}$},N={y|y=$\sqrt{x-3}$•$\sqrt{3-x}$} 则下列结论正确的是(  )
A.M=NB.M∩N={3}C.M∪N={0}D.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,已知两点A(2,-1)和B(-1,5),点P满足$\overrightarrow{AP}$=2$\overrightarrow{PB}$,则点P的坐标为(0,3).

查看答案和解析>>

同步练习册答案