精英家教网 > 高中数学 > 题目详情
1.若角θ的终边过点P(3,-4),则tan(θ+π)=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

分析 利用任意角的三角函数的定义,诱导公式,求得要求式子的值.

解答 解:∵角θ的终边过点P(3,-4),则tan(θ+π)=-tanθ=-$\frac{y}{x}$=-$\frac{-4}{3}$=$\frac{4}{3}$,
故选:C.

点评 本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设f(x)是R上的奇函数,当x≥0时,f(x)=2x+3x-b(b为常数),则f(-2)=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)为奇函数,且在(0,+∞)上是递增的,若f(-3)=0,则xf(x)>0的解集是(  )
A.{x|-3<x<0或x>3}B.{ x|x<-3或0<x<3}C.{ x|x<-3或x>3}D.{ x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2x+$\frac{2}{{2}^{x}}$的最小值为(  )
A.1B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是公差为2的等差数列,数列{bn满足bn+1-bn=an,且b2=-18,b3=-24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求bn取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在正方形ABCD中,E是线段CD的中点,若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BD}$,则λ-μ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知动点P与双曲线$\frac{y^2}{9}$-$\frac{x^2}{16}$=1的两个焦点F1,F2所连线段的和为6$\sqrt{5}$,
(1)求动点P的轨迹方程;
(2)若$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,求点P的坐标;
(3)求角∠F1PF2余弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的建康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社会每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P、种黄瓜的年收入Q与投入a(单位:万元)满足P=80+4$\sqrt{2a}$,Q=$\frac{1}{4}$a+120,设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).
(1)求f(50)的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等比数列{an}的各项均为正数,且满足:a1a9=4,则数列{log2an}的前9项之和为9.

查看答案和解析>>

同步练习册答案