精英家教网 > 高中数学 > 题目详情
20.双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的焦距为(  )
A.$3\sqrt{2}$B.$\sqrt{5}$C.$2\sqrt{5}$D.$4\sqrt{5}$

分析 由双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$,易知c2=3+2=5,求出c,即可求出双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的焦距.

解答 解:由双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$,易知c2=3+2=5,
∴c=$\sqrt{5}$,
∴双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的焦距为2$\sqrt{5}$.
故选:C.

点评 本题考查双曲线的标准方程,双曲线标准方程中的参数a,b,c的关系:c2=a2+b2,双曲线焦距的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|\overrightarrow a|=2|\overrightarrow b|,|\overrightarrow b|≠0$,且关于x的函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}+\overrightarrow a•\overrightarrow bx$在R上有极值,则$\overrightarrow a$与$\overrightarrow b$的夹角范围为(  )
A.$[0,\frac{π}{6})$B.$(\frac{π}{6},π]$C.$(\frac{π}{3},\frac{2π}{3}]$D.$(\frac{π}{3},π]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x2-2lnx的单调减区间是                                   (  )
A.(0,1]B.[1,+∞)C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2.若双曲线C上存在一点P,使得△PF1F2为等腰三角形,且cos∠PF1F2=$\frac{1}{8}$,则双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设向量$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+3$\overrightarrow{b}$.若向量$\overrightarrow{c}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为θ,则cosθ的最小值等于$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于数列A:a1,a2,…,an,经过变换T:交换A中某相邻两段的位置(数列A中的一项或连续的几项称为一段),得到数列T(A).例如,数列A:a1,…,ai,$\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,{a_{i+p+q+1}},…,{a_n}$(p≥1,q≥1)
经交换M,N两段位置,变换为数列T(A):a1,…,ai,$\underbrace{{a_{i+p+1}},…,{a_{i+p+q}}}_N,\underbrace{{a_{i+1}},…,{a_{i+p}}}_M,{a_{i+p+q+1}},…,{a_n}$.
设A0是有穷数列,令Ak+1=T(Ak)(k=0,1,2,…).
(Ⅰ)如果数列A0为3,2,1,且A2为1,2,3.写出数列A1;(写出一个即可)
(Ⅱ)如果数列A0为9,8,7,6,5,4,3,2,1,A1为5,4,9,8,7,6,3,2,1,A2为5,6,3,4,9,8,7,2,1,A5为1,2,3,4,5,6,7,8,9.写出数列A3,A4;(写出一组即可)
(Ⅲ)如果数列A0为等差数列:2015,2014,…,1,An为等差数列:1,2,…,2015,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某科技兴趣小组需制作一个面积为$2\sqrt{2}$平方米,底角为45°的等腰梯形构件,则该梯形构件的周长的最小值为8米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=x2-ax-6a,其中a是常数.
(1)若f(x)<0的解集是{x|-3<x<6},求a的值,并解不等式$\frac{f(x)}{x-a}$≥0.
(2)若不等式f(x)<0有解,且解区间长度不超过5个长度单位,求a的取值范围.

查看答案和解析>>

同步练习册答案