精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和为Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,求这个数列的通项公式.

分析 根据数列项和前n项和之间的关系进行求解即可.

解答 解:(1)当n=1时,a1=S1=$\frac{47}{12}$,
(2)当n≥2时,an=Sn-Sn-1=$\frac{1}{4}$n2+$\frac{2}{3}$n+3-[$\frac{1}{4}$(n-1)2+$\frac{2}{3}$(n-1)+3]=$\frac{1}{2}$n+$\frac{5}{12}$.
经检验,a1=$\frac{47}{12}$,不满足上式.
所以这个数列的通项公式an=$\left\{\begin{array}{l}{\frac{47}{12},n=1}\\{\frac{1}{2}n+\frac{5}{12},n≥2}\end{array}\right.$.

点评 本题主要考查数列通项公式的求解,根据an=Sn-Sn-1的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)=ax3+bx2+c,其导函数f′(x)的图象如图所示,则函数f(x)取得极小值时x的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=9$.
(Ⅰ)求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(Ⅱ)求$|{\overrightarrow a+\overrightarrow b}|$及向量$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知p:|1-$\frac{x-1}{3}$|≤2,q:1-m≤x≤1+m(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围是[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若a,b∈R且a≠b,则在  ①a+b>2b2;  ②a5+b5>a3b2+a2b3;③a2+b2≥2(a-b-1);  ④$\frac{b}{a}$+$\frac{a}{b}$>2.这四个式子中一定成立的有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U={0,1,2,3,4,5,6,7,8},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁UA)∩(∁UB)=(  )
A.{5,8}B.{7}C.{0,1,3}D.{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解方程:(x2-x+1)5-x5+4x2-8x+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△AOB的顶点坐标分别是A(4,0),B(0,3),O(0,0)则△AOB外接圆的方程是(  )
A.x2+y2+4x-3y=0B.x2+y2-4x-3y=0C.x2+y2+4x+3y=0D.x2+y2-4x+3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$的焦距为(  )
A.$3\sqrt{2}$B.$\sqrt{5}$C.$2\sqrt{5}$D.$4\sqrt{5}$

查看答案和解析>>

同步练习册答案