精英家教网 > 高中数学 > 题目详情
1.已知$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=9$.
(Ⅰ)求向量$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(Ⅱ)求$|{\overrightarrow a+\overrightarrow b}|$及向量$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$方向上的投影.

分析 (Ⅰ)将已知等式展开转化为两个向量的模压机数量积的计算问题,利用数量积公式求θ;
(Ⅱ)根据投影的定义,利用数量积公式解答.

解答 解:(Ⅰ)因为$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,$(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=9$.
所以$4{\overrightarrow{a}}^{2}-3{\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}=9$,即16-8cosθ-3=9,
所以cosθ=$\frac{1}{2}$,
因为θ∈[0,π],
所以$θ=\frac{π}{3}$;
(Ⅱ)由(Ⅰ)可知$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos\frac{π}{3}=1$,
所以$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})$=${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow{b}$=5,|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}=\sqrt{7}$,
所以向量$\overrightarrow a$在$\overrightarrow a+\overrightarrow b$方向上的投影为:$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}|}=\frac{5}{\sqrt{7}}=\frac{5\sqrt{7}}{7}$.

点评 本题考查了平面向量的数量积公式的运用求向量的夹角以及一个向量在另一个向量的投影;关键是熟练掌握数量积公式以及几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知全集U={0,1,2,3,4,5,6},集合A={0,3,5},集合B={2,4,5},则(∁UA)∩B为(  )
A.{2,4}B.{2,6}C.{0,1,3}D.{2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.关于xi(i=1,2,3,4,5)的方程x1+x2+x3+x4+x5=10(xi∈N*)的所有解的组数126(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.周长为1,圆心角为1rad的扇形的面积等于(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}的公差d<0,a3a5=112,a4=11.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,当n为何值时,Sn取得最大值?并求此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等腰三角形顶角的余弦值为$-\frac{7}{25}$,则这个三角形底角的正切值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知正数x,y满足|lg$\frac{x}{y}$|≤1,且|lg(x2y)|≤1,求xy的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|\overrightarrow a|=2|\overrightarrow b|,|\overrightarrow b|≠0$,且关于x的函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}+\overrightarrow a•\overrightarrow bx$在R上有极值,则$\overrightarrow a$与$\overrightarrow b$的夹角范围为(  )
A.$[0,\frac{π}{6})$B.$(\frac{π}{6},π]$C.$(\frac{π}{3},\frac{2π}{3}]$D.$(\frac{π}{3},π]$

查看答案和解析>>

同步练习册答案