精英家教网 > 高中数学 > 题目详情
19.已知△AOB的顶点坐标分别是A(4,0),B(0,3),O(0,0)则△AOB外接圆的方程是(  )
A.x2+y2+4x-3y=0B.x2+y2-4x-3y=0C.x2+y2+4x+3y=0D.x2+y2-4x+3y=0

分析 设△AOB的外接圆的方程为:x2+y2+Dx+Ey+F=0,把A(4,0),B(0,3),O(0,0)三点代入能求出圆的方程.

解答 解:设三角形AOB的外接圆的方程为:x2+y2+Dx+Ey+F=0,
把A(4,0),B(0,3),O(0,0)三点代入,得:$\left\{\begin{array}{l}{16+4D+F=0}\\{9+3E+F=0}\\{F=0}\end{array}\right.$,
解得D=-4,E=-3,F=0,
∴三角形AOB外接圆的方程为x2+y2-4x-3y=0.
故选:B.

点评 本题考查圆的方程的求法,是基础题,解题时要认真审题,注意待定系数法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.周长为1,圆心角为1rad的扇形的面积等于(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{9}$D.$\frac{1}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=alnx+$\frac{1}{2}$x2-(1+a)x(x>0).
(1)求函数f(x)的单调区间;
(2)若f(x)≥0在(0,+∞)内恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知M(1,1)、N(3,3)则|MN|=(  )
A.8B.4C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2x.
(1)若x∈[-2,a],a>-2时,求f(x)的值域.
(2)若存在实数t,当x∈[1,m],m>1时,f(x+t)≤3x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|\overrightarrow a|=2|\overrightarrow b|,|\overrightarrow b|≠0$,且关于x的函数$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}|\overrightarrow a|{x^2}+\overrightarrow a•\overrightarrow bx$在R上有极值,则$\overrightarrow a$与$\overrightarrow b$的夹角范围为(  )
A.$[0,\frac{π}{6})$B.$(\frac{π}{6},π]$C.$(\frac{π}{3},\frac{2π}{3}]$D.$(\frac{π}{3},π]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x2-2lnx的单调减区间是                                   (  )
A.(0,1]B.[1,+∞)C.(-∞,-1]∪(0,1]D.[-1,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某科技兴趣小组需制作一个面积为$2\sqrt{2}$平方米,底角为45°的等腰梯形构件,则该梯形构件的周长的最小值为8米.

查看答案和解析>>

同步练习册答案