精英家教网 > 高中数学 > 题目详情
13.已知f(x)是定义在区间(0,+∞)内的单调函数,且对?x∈(0,∞),都有f[f(x)-lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)-f′(x)的零点个数为(  )
A.0B.lC.2D.3

分析 由设t=f(x)-lnx,则f(x)=lnx+t,又由f(t)=e+1,求出f(x)=lnx+e,从而求出g(x)的解析式,根据函数的单调性求出函数的零点的个数即可.

解答 解:根据题意,对任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)-lnx为定值,
设t=f(x)-lnx,
则f(x)=lnx+t,
又由f(t)=e+1,
即lnt+t=e+1,
解得:t=e,
则f(x)=lnx+e,f′(x)=$\frac{1}{x}$>0,
故g(x)=lnx+e-$\frac{1}{x}$,则g′(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}}$>0,
故g(x)在(0,+∞)递增,
而g(1)=e-1>0,g($\frac{1}{e}$)=-1<0,
存在x0∈($\frac{1}{e}$,1),使得g(x0)=0,
故函数g(x)有且只有1个零点,
故选:B.

点评 本题考查了导数的运算和零点存在定理,关键是求出f(x),属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.记max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ,μ≥0,且λ+μ=1,则当max{$\overrightarrow{c}$•$\overrightarrow{a}$,$\overrightarrow{c}$•$\overrightarrow{b}$}取最小值时,|$\overrightarrow{c}$|=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{2}}{3}$C.1D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,则该几何体的表面积S=48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x+$\frac{1}{a}$|+|x-a+1|(a>0是常数).
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(3)<$\frac{11}{2}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,且a≠1,则双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-y2=1与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-x2=1的(  )
A.焦点相同B.顶点相同C.渐近线相同D.离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数既是奇函数,又在[-1,1]上单调递增是(  )
A.f(x)=|sinx|B.f(x)=ln$\frac{2-x}{2+x}$C.f(x)=$\frac{1}{2}$(ex-e-xD.f(x)=ln($\sqrt{{x}^{2}+1}$-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f'(x)是函数f(x)在定义域R上的导函数,若f(0)=1且f'(x)-2f(x)=0,则不等式f(ln(x2-x))<4的解集为(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=(1-i)2+$\frac{2}{1+i}$(i为虚数单位)在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在R上的函数f(x)=|x-m|+|x|,m∈N*,若存在实数x使得f(x)<2成立.
(1)求实数m的值;
(2)若α,β>1,f(α)+f(β)=6,求证:$\frac{4}{α}+\frac{1}{β}≥\frac{9}{4}$.

查看答案和解析>>

同步练习册答案