精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C的对边分别为a,b,c,满足数学公式
(1)求角B的大小.
(2)设角A的大小为x,△ABC的周长为y,求y=f(x)的最大值.

解:(1)∵b2=a2+c2+ac
∴cosB==-
∴B=120°
(2)由正弦定理可知==
a=•sinA=4sinx,c=•sin(60°-x)=
∴y=4sinx+4sin(60°-x)+2=4cos(-30°)+2≤4+2
故y的最大值为:4+2
分析:(1)把b2=a2+c2+ac代入余弦定理求得cosB的值,进而求得B.
(2)利用正弦定理分别求得a和c,进而求得三角形周长的表达式,利用和差化积公式化简整理后,利用余弦函数的性质求得最大值.
点评:本题主要考查了正弦定理和余弦定理的应用.解题的过程是通过余弦定理和正弦定理完成了边角问题的互化,达到解决问题的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案