【题目】已知函数
,函数
是区间
上的减函数.
(1)求
的最大值;
(2)若
在
上恒成立,求
的取值范围;
(3)讨论关于
的方程
的根的个数.
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,准线为
,三个点
,
,
中恰有两个点在
上.
(1)求抛物线
的标准方程;
(2)过
的直线交
于
,
两点,点
为
上任意一点,证明:直线
,
,
的斜率成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在
内,发布成绩使用等级制,各等级划分标准见下表.
百分制 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | A | B | C | D |
规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.
按照
,
,
,
,
的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示
![]()
求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;
根据频率分布直方图,求成绩的中位数
精确到
;
在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
![]()
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:
,
,
,
,
,
.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的
列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,椭圆
:
的左、右焦点分别为
,
,右顶点为
,上顶点为
,若
,
,
成等比数列,椭圆
上的点到焦点
的距离的最大值为
.
求椭圆
的标准方程;
过该椭圆的右焦点作两条互相垂直的弦
与
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
⊥底面
,底面
为等边三角形,
,
,
,
分别为
,
的中点.
![]()
(1)求证:
平面
;
(2)求平面
与平面
所成二面角的余弦值;
(3)设平面
与平面
的交线为
求证:
与平面
不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,小圆圈表示网络结点,结点之间的连线表示它们之间有网线连接,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B发送信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
![]()
A.19 B.20 C.24 D. 26
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段
、
、
、
后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:
![]()
求分数在
内的频率,并补全这个频率分布直方图;
统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
若从60名学生中随抽取2人,抽到的学生成绩在
记0分,在
记1分,在
记2分,用
表示抽取结束后的总记分,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com