精英家教网 > 高中数学 > 题目详情
8.函数y=2sinx+2cosx的值域是[$-2\sqrt{2},2\sqrt{2}$].

分析 利用辅助角公式化积,则函数y=2sinx+2cosx的值域可求.

解答 解:y=2sinx+2cosx=$2\sqrt{2}(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)$
=$2\sqrt{2}(sinxcos\frac{π}{4}+cosxsin\frac{π}{4})=2\sqrt{2}sin(x+\frac{π}{4})$.
∴函数y=2sinx+2cosx的值域是[$-2\sqrt{2},2\sqrt{2}$].
故答案为:[$-2\sqrt{2},2\sqrt{2}$].

点评 本题考查三角函数最值的求法,考查了两角和与差的正弦,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某多面件的三视图,该多面体的体积为(  )
A.40cm3B.50cm3C.60cm3D.80cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列四个函数中,既是奇函数又是定义域上的单调递增的是(  )
A.y=2-xB.y=tanxC.y=x3D.y=log3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sinxcosx+cos2x.
(Ⅰ)求f ($\frac{π}{4}$)的值;
(Ⅱ)设α∈(0,$\frac{3}{4}$π),f($\frac{α}{2}$)=$\frac{1}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p对任意x∈R,总有|x-1|+|x+1|>2;命题q:x>2是x>1的充分不必要条件.则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在平面直角坐标系xoy中,圆x2+y2=r2(r>0)内切于正方形ABCD,任取圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则$\frac{1}{4}$是m2,n2的等差中项,现有一椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)内切于矩形ABCD,任取椭圆上一点P,若$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),则m2,n2的等差中项为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$).
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角(用弧度表示);
(2)设$\overrightarrow{c}$=(cosθ,sinθ),若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{c}$,求sinθ和cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知E、F是x轴上的点,坐标原点O为线段EF的中点,|$\overrightarrow{FG}|=10,|\overrightarrow{EF}$|=6,G,P是坐标平面上的动点,点P在线段FG上,EG的中点为H,且$\overrightarrow{PH}•\overrightarrow{EG}$=0.
(Ⅰ)求P的轨迹C的方程;
(Ⅱ)已知直线l过点E(-3,0)且与轨迹C交于A,B两点,M为AB的中点,求△OEM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2),M?N=x1x2+y1y2则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M
其中真命题的序号为①③④(把真命题的序号全部写出)

查看答案和解析>>

同步练习册答案