精英家教网 > 高中数学 > 题目详情
16.某单位安排甲、乙、丙三人在某月1日至I2日值班,每人4天,
甲说:我在2日和3日都有值班;
乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.
据此可判断丙必定值班的日期有(  )
A.6日和12日B.5日和6日C.1月和5月D.1月和11日

分析 确定三人各自值班的日期之和为26,根据甲说:我在2日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、11日值班,乙在8、9、2、7或8、9、4、5,即可确定丙必定值班的日期.

解答 解:由题意,1至12的和为78,
因为三人各自值班的日期之和相等,
所以三人各自值班的日期之和为26,
根据甲说:我在2日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在2、3、10、11日值班,乙在8、9、2、7或8、9、4、5,
据此可判断丙必定值班的日期是6日和12日,
故选:A.

点评 本题考查分析法,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设f(x)=x-aex,x∈R,已知函数y=f(x)有两个零点x1,x2,且x1<x2,则a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相邻两个对称轴的距离为$\frac{π}{2}$,以下哪个区间是函数f(x)的单调减区间(  )
A.[-$\frac{π}{3}$,0]B.$[\frac{π}{12},\frac{7π}{12}]$C.[0,$\frac{π}{3}$]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图2).

(1)求证:PB⊥DE;
(2)若PE⊥BE,PE=1,求点B到平面PEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当点P在圆x2+y2=1上变动时,它与定点Q(-3,0)的连结线段PQ的中点的轨迹方程是(  )
A.(x+3)2+y2=4B.(x-3)2+y2=4C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),若tan(α+β)=2tanβ,则当α取最大值时,tanβ=$\frac{\sqrt{2}}{2}$,tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={1,2},集合N={0,1,3},则M∩N=(  )
A.{1,2,3}B.{1,2}C.{0,1}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若钝角三角形的三边长和面积都是整数,则称这样的三角形为“钝角整数三角形”,下列选项中能构成一个“钝角整数三角形”三边长的是(  )
A.2,3,4B.2,4,5C.5,5,6D.4,13,15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-3,4),则$2\overrightarrow a$-$\overrightarrow b$的结果是(  )
A.(7,-2)B.(1,-2)C.(1,-3)D.(7,2)

查看答案和解析>>

同步练习册答案