| A. | 2,3,4 | B. | 2,4,5 | C. | 5,5,6 | D. | 4,13,15 |
分析 设三角形的最大角为θ,则利用余弦定理可求cosθ,利用同角三角函数基本关系式可求sinθ,利用三角形面积公式可求三角形面积,逐一判断各个选项即可.
解答 解:设三角形的最大角为θ,则:
对于A,cosθ=$\frac{{2}^{2}+{3}^{2}-{4}^{2}}{2×2×3}$=-$\frac{1}{4}$,sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{15}}{4}$,S=$\frac{1}{2}$×2×3×$\frac{\sqrt{15}}{4}$=$\frac{3\sqrt{15}}{4}$,不能;
对于B,cosθ=$\frac{4+16-25}{2×2×4}$=-$\frac{5}{16}$,sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{231}}{16}$,S=$\frac{1}{2}$×2×4×$\frac{\sqrt{231}}{16}$=$\frac{\sqrt{231}}{4}$,不能;
对于C,cosθ=$\frac{25+25-36}{2×5×5}$=$\frac{7}{25}$,故三角形为锐角三角形,不符合条件;
对于D,cosθ=$\frac{16+169-225}{2×4×13}$=-$\frac{5}{13}$,sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{12}{13}$,S=$\frac{1}{2}$×4×13×$\frac{12}{13}$=24,符合条件;
故选:D.
点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6日和12日 | B. | 5日和6日 | C. | 1月和5月 | D. | 1月和11日 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -1 | D. | 1或-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com