精英家教网 > 高中数学 > 题目详情
4.如图1,等腰直角三角形ABC的底边AB=4,点D在线段AC上,DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图2).

(1)求证:PB⊥DE;
(2)若PE⊥BE,PE=1,求点B到平面PEC的距离.

分析 (1)根据线面垂直的判定定理和性质定理进行证明,
(2)根据点到直线的距离的定义,利用体积法进行求解即可.

解答 证明:(1)∵DE⊥AB,∴DE⊥PE,DE⊥EB.…(2分)
又∵PE∩BE=E,∴DE⊥平面PEB.…(4分)
∵PB?平面PEB,∴PB⊥DE.…(5分)
(2)由(1)知DE⊥PE,且PE⊥BE,DE∩BE=E,所以PE⊥平面BEDC.…(6分)
连结EC.∵PE=1,∴$DE=PE=1,AD=DC=\sqrt{2}$.
在△EDC中,∠EDC=135°,
由余弦定理得$E{C^2}=D{E^2}+D{C^2}-2DE×DC×cos∠EDC=1+2-2\sqrt{2}×(-\frac{{\sqrt{2}}}{2})=5$,…(8分)
∴$EC=\sqrt{5}$,∴${S_{△PEC}}=\frac{1}{2}×PE×EC=\frac{{\sqrt{5}}}{2}$.…(10分)
设点B到平面PEC的距离为h,则由VP-BEC=VB-PEC得$\frac{1}{3}{S_{△PEC}}•h=\frac{1}{3}{S_{△BEC}}•PE$,
所以$\frac{{\sqrt{5}}}{2}h=\frac{1}{2}×3×2×1$,所以$h=\frac{{6\sqrt{5}}}{5}$.…(12分)

点评 本题主要考查空间直线和平面垂直的性质定理以及点到平面的距离,利用体积法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)在区间[a,b]上有单调性,且f(a)•f(b)<0,则方程f(x)=0在区间[a,b]上有0或1个根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知某几何体的三视图和直观图如图所示,其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.
(1)证明:平面BCN⊥平面C1NB1
(2)求二面角C-NB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.从一个棱长为1的正方体中切去一部分,得到一个几何体,某三视图如图,则该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{a}$=(m,n-1),$\overrightarrow{b}$=(1,2)(m、n为正数),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{m+1}$+$\frac{2}{n+1}$的最小值是$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.a>0且a≠$\frac{1}{2}$,求g(x)=lnx-ax-$\frac{a-1}{x}$在区间[1,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某单位安排甲、乙、丙三人在某月1日至I2日值班,每人4天,
甲说:我在2日和3日都有值班;
乙说:我在8日和9日都有值班;
丙说:我们三人各自值班的日期之和相等.
据此可判断丙必定值班的日期有(  )
A.6日和12日B.5日和6日C.1月和5月D.1月和11日

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一根铁棒在40℃时长12.506m,在80℃时长12.512m.已知长度l(m)而与温度t(℃)的关系可以用直线方程来表示,试用两点式表示这个方程;并根据方程,求铁棒在100℃时的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(α+$\frac{7π}{6}$)=1,则cos(2α-$\frac{2π}{3}$)的值是(  )
A.0B.1C.-1D.1或-1

查看答案和解析>>

同步练习册答案