精英家教网 > 高中数学 > 题目详情
6.若函数y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)在其中一个周期内的图象上有一个最高点($\frac{π}{12}$,3)和一个最低点($\frac{7π}{12}$,-5),求该函数的解析式.

分析 由函数的图象的顶点坐标求出A,b,由周期求出ω,由顶点的坐标求出φ的值.

解答 解:由题意可知:$\left\{\begin{array}{l}{A+b=3}\\{-A+b=-5}\end{array}\right.$,解得:A=4,b=-1,
∵$\frac{T}{2}$=$\frac{7π}{12}$-$\frac{π}{12}$=$\frac{π}{2}$,可得:T=π=$\frac{2π}{ω}$,求得ω=2.
再根据最高点的坐标可得2×$\frac{π}{12}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
∴φ=$\frac{π}{3}$+2kπ,k∈Z.
结合|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{3}$.
可得该函数的解析式为:y=4sin(2x+$\frac{π}{3}$)-1.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由顶点的坐标求出φ的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,抛物线x2=2py(p>0)的焦点坐标为(0,1),则实数p的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个正三棱柱的主(正)视图是长为2$\sqrt{3}$,宽为4的矩形,则它的外接球的表面积等于(  )
A.64πB.48πC.32πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在$[-\frac{π}{12},\frac{π}{3}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.命题p:若“?x0∈[0,$\frac{π}{4}$],tanx0>m-3”是假命题,则实数m的最小值为4.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

函数上单调递增,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

已知集合,集合,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正方体ABCD-A1B1C1D1棱长为1,E、F为线段B1D1的两个动点,且EF=$\frac{\sqrt{2}}{2}$,给出下列四个命题:
①AC⊥BE;
②EF∥平面ABCD;
③点B到平面AEF的距离为定值;
④异面直线AE与BF所成的角为定值.
其中真命题的个数为(  )
A.4个B.3个C.2个D.1个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给定正奇数n,数列{an}:a1,a2,…,an是1,2,…,n的一个排列,定义E(a1,a2,…,an)=|a1-1|+|a2-2|+…+|an-n|为数列{an}:a1,a2,…,an的位差和.
(Ⅰ)当n=5时,则数列{an}:1,3,4,2,5的位差和为4;
(Ⅱ)若位差和E(a1,a2,…,an)=4,则满足条件的数列{an}:a1,a2,…,an的个数为$\frac{{({n-2})({n+3})}}{2}$.;(用n表示)

查看答案和解析>>

同步练习册答案