精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系xOy中,抛物线x2=2py(p>0)的焦点坐标为(0,1),则实数p的值为2.

分析 抛物线x2=2py的焦点坐标为(0,1),可得$\frac{p}{2}$=1,即可得到实数p的值.

解答 解:∵抛物线x2=2py的焦点坐标为(0,1),∴$\frac{p}{2}$=1.
∴p=2.
故答案为:2.

点评 本题考查了抛物线的标准方程及其性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日、第五日、第八日所织之和为十五尺,问第十日所织尺数为(  )
A.6B.9C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则该几何体的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.
(Ⅰ) 求圆C的直角坐标方程;并判断直线l与圆C的位置关系.
(Ⅱ) 设圆C与直线l交于点A、B,若点P的坐标为(2,1),求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{x}{{e}^{2x}}$+1的最大值为$\frac{1}{2e}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知圆内接四边形ABCD中,AB=BC,AD的延长线与BC的延长线交于点P.
(1)求证:$\frac{BC}{BP}$=$\frac{DC}{DP}$;
(2)求证:∠BDC+$\frac{1}{2}∠PDC={90°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知高与底面半径相等的圆锥的体积为$\frac{8π}{3}$,其侧面积与球O的表面积相等,则球O的体积为$\frac{{4\root{4}{8}π}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.根据国家最新人口发展战略,一对夫妇可生育两个孩子,为了解人们对放开生育二胎政策的意向,某机构在A城市随机调查了100位30到40岁已婚人群,得到情况如表:
意向合计
402060
不生202040
合计6040100
(Ⅰ)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由(请参考所附的公式及相关数据);
(Ⅱ)从这60名男性中按对生育二胎政策的意向采取分层抽样,抽取6名男性,从这6名男性中随机选取两名,求选到的两名都愿意生育二胎的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)在其中一个周期内的图象上有一个最高点($\frac{π}{12}$,3)和一个最低点($\frac{7π}{12}$,-5),求该函数的解析式.

查看答案和解析>>

同步练习册答案