精英家教网 > 高中数学 > 题目详情
17.已知正方体ABCD-A1B1C1D1棱长为1,E、F为线段B1D1的两个动点,且EF=$\frac{\sqrt{2}}{2}$,给出下列四个命题:
①AC⊥BE;
②EF∥平面ABCD;
③点B到平面AEF的距离为定值;
④异面直线AE与BF所成的角为定值.
其中真命题的个数为(  )
A.4个B.3个C.2个D.1个.

分析 ①AC⊥BE,可由线面垂直证两线垂直;
②EF∥平面ABCD,可由线面平行的定义请线面平行;
③三棱锥A-BEF的体积为定值,可证明棱锥的高与底面积都是定值得出体积为定值,根据等积法可得答案;
④异面直线AE、BF所成的角为定值,可由两个极好位置说明两异面直线所成的角不是定值

解答 解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;
②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;
③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,
又由△AEF的面积为定值,可得点B到平面AEF的距离为定值,此命题正确;
④异面直线AE、BF所成的角为定值,由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值.
综上知①②③正确
故选:B.

点评 本题考查棱柱的结构特征,解答本题关键是正确理解正方体的几何性质,且能根据这些几何特征,对其中的点线面和位置关系作出正确判断.熟练掌握线面平行的判断方法,异面直线所成角的定义以及线面垂直的证明是解答本题的知识保证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.根据国家最新人口发展战略,一对夫妇可生育两个孩子,为了解人们对放开生育二胎政策的意向,某机构在A城市随机调查了100位30到40岁已婚人群,得到情况如表:
意向合计
402060
不生202040
合计6040100
(Ⅰ)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由(请参考所附的公式及相关数据);
(Ⅱ)从这60名男性中按对生育二胎政策的意向采取分层抽样,抽取6名男性,从这6名男性中随机选取两名,求选到的两名都愿意生育二胎的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数y=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)在其中一个周期内的图象上有一个最高点($\frac{π}{12}$,3)和一个最低点($\frac{7π}{12}$,-5),求该函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等比数列{an}中,a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,则通项an等于(  )
A.2n-1B.2nC.2n+1D.2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.随机变量X的分布列如下:若E(X)=$\frac{15}{8}$,则D(X)等于(  )
X123
P0.5xy
A.$\frac{7}{32}$B.$\frac{9}{32}$C.$\frac{33}{64}$D.$\frac{55}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥P-ABC中,△PBC和△PAC是边长为$\sqrt{2}$的等边三角形,AB=2,D是AB中点.
(1)在棱PA上求一点M,使得DM∥面PBC;
(2)求证:面PAB⊥面ABC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{{\begin{array}{l}{(2-a)x+3a,x<1}\\{{{log}_2}x,x≥1}\end{array}}\right.$的值域为R,则实数a的取值范围是(  )
A.(-1,2)B.[-1,2)C.(-∞,-1]D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给定椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),称圆x2+y2=a2+b2为椭圆E的“伴随圆”.
已知椭圆E中b=1,离心率为$\frac{\sqrt{6}}{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l与椭圆E交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=$\sqrt{13}$时,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=x-alnx.(a≠0)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)≥a2,求a的取值范围.

查看答案和解析>>

同步练习册答案