精英家教网 > 高中数学 > 题目详情
5.已知等比数列{an}中,a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,则通项an等于(  )
A.2n-1B.2nC.2n+1D.2n+2

分析 将已知两式相除即可求得q=2,然后根据等比数列的通项公式求得首项.

解答 解:设等比数列{an}的公比为q,
∵a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,
∴q=$\frac{{a}_{2}+{a}_{3}+{a}_{4}+{a}_{5}+{a}_{6}}{{a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}+{a}_{5}}$=$\frac{62}{31}$=2,
∴a1(1+q+q2+q3+q4)=31,
则a1=31,
故an=2n-1
故选:A.

点评 本题考查了等比数列的性质,等比数列的定义,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知某几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度,再向上平移1个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在$[-\frac{π}{12},\frac{π}{3}]$上的最值.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

函数上单调递增,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

已知集合,集合,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,BC=$\sqrt{2}$,∠ABC=45°,AE⊥PC,垂足为E.
(Ⅰ)求证:平面AEB⊥平面PCD;
(Ⅱ)若二面角B-AE-D的大小为150°,求侧棱PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正方体ABCD-A1B1C1D1棱长为1,E、F为线段B1D1的两个动点,且EF=$\frac{\sqrt{2}}{2}$,给出下列四个命题:
①AC⊥BE;
②EF∥平面ABCD;
③点B到平面AEF的距离为定值;
④异面直线AE与BF所成的角为定值.
其中真命题的个数为(  )
A.4个B.3个C.2个D.1个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1与$\frac{{x}^{2}}{9-k}$+$\frac{{y}^{2}}{25-k}$=1(0<k<9)的关系是(  )
A.有相等的焦距,相同的焦点B.有不同的焦距,不同的焦点
C.有相等的焦距,不同的焦点D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的外接圆圆心为O,半径为2,$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$,且$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}$|,则$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影为(  )
A.1B.2C.$\sqrt{3}$D.3

查看答案和解析>>

同步练习册答案