精英家教网 > 高中数学 > 题目详情

已知向量
(1)求函数的单调增区间;
(2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积求b+c的值.

(Ⅰ);(2).

解析试题分析:(1)利用数量积,二倍角的降幂公式,将化简,,然后利用公式,求出单调增区间;(2)由算出角A,然后由三角形面积公式,,余弦定理,建立方程,得出b+c.此题主要考察基础知识,属于简单题,对于这种形式的函数性质要熟练掌握.
试题解析:(1)
           2分
         4分
           5分

的单调递增区间为            6分
(2)
            8分

由余弦定理得:
          10分

所以            12分
考点:1.三角函数的化简,性质;2.余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=2cos2x+2sinxcosx-1(x∈R).
(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.
(2)若x∈[0,],求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(Asin ωxAcos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ为锐角.f(x)的图象的两个相邻对称中心的距离为,且当x时,f(x)取得最大值3.
(1)求f(x)的解析式;
(2)将f(x)的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g(x)的图象,若g(x)为奇函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是函数的部分图象,直线是其两条对称轴.

(1)求函数的解析式;
(2)写出函数的单调增区间;
(3)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,其中.
(1)问向量能平行吗?请说明理由;
(2)若,求的值;
(3)在(2)的条件下,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数)一段图像如图所示.

(1)求函数的解析式;
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的4倍,得到函数的图像,求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为,且,.
(Ⅰ) 求的值;
(Ⅱ) 设函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求下列各式的值:(1);(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(3sin α,cos α),b=(2sin α,5sin α-4cos α),α,且ab.
(1)求tan α的值;
(2)求cos的值.

查看答案和解析>>

同步练习册答案