精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知椭圆的长轴长为,离
心率
(1)求椭圆C的标准方程;
(2)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于点E,F,且
求直线的方程。


(II)由题意知的斜率存在且不为零,
方程为 ①
将①代入,整理得 …………………………8分
  
,则 ② 
由已知 ,即. 代入②得, ………………10分
消去  
解得,满足 即. ……………………………………12分
所以,所求直线的方程为 …………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线经过椭圆S:的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面直角坐标系中点F(1,0)和直线,动圆M过点F且与直线相切。
(1)求M的轨迹L的方程;
(2)过点F作斜率为1的直线交曲线L于A、B两点,求|AB|的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知+=1的焦点F1、F2,在直线lx+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的一个顶点和一个焦点分别是直线x+3y-6=0与两坐标轴的交点,则椭圆的标准方程为                         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C
(I)求曲线C的方程;
(II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆两点,且成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,且经过定点为椭圆上的动点,以点为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个不同交点,求点横坐标的取值范围;
(3)是否存在定圆,使得圆与圆恒相切?若存在,求出定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案