精英家教网 > 高中数学 > 题目详情
10.在下列区间中,2x2-2x=0有实数解的是(  )
A.(-3,-2)B.(-1,0)C.(2,3)D.(4,5)

分析 利用零点存在定理,先分别求出f(x)在各个区间内两个端点处的函数值与0的大小关系,然后再进行判断.

解答 解:由题意:2x2-2x=0,
令f(x)=2x2-2x
∵f(-1)=2-$\frac{1}{2}$>0
f(0)=0-1=-1<0,
∴在(-1,0)内方程f(x)=0有实数解.
故选:B.

点评 本题考查函数零点存在定理,需要对各个区间内两个端点处考查.解题时要认真审题,注意函数值的运算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知第一象限内的点A(a,b)在直线x+y-2=0上,则y=$\frac{1}{a}$+$\frac{4}{b}$的最小值是(  )
A.$\frac{7}{2}$B.4C.$\frac{9}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列命题:
(1)函数y=sin|x|不是周期函数;
(2)函数y=tanx在定义域内为增函数;
(3)函数y=|cos2x+$\frac{1}{2}$|的最小正周期为$\frac{π}{2}$;
(4)函数y=4sin(2x+$\frac{π}{3}$),x∈R的一条对称轴为$x=\frac{π}{12}$.
其中正确命题的序号是(1)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,an+1<an,a2•a8=6,a4+a6=5,则$\frac{a_4}{a_6}$等于(  )
A.$\frac{5}{6}$B.$\frac{6}{5}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={1,2,3,4,5,6},B={1,3,6},那么A∩B等于(  )
A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{1,3,6}D.{3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,侧棱A1A⊥底面ABCD,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b是两条不同的直线,α是平面,且a?α,“a∥b”是“b∥α”的(  )
A.充分不必要条件B.必要不从分条件
C.充分不要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为2,离心率$e=\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的标准方程;
(2)若P是该椭圆上的一个动点,F1,F2是椭圆C的两个焦点,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值和最小值;
(3)设过定点M(0,2)且斜率为k的直线l与椭圆交于不同的两点A、B,在y轴上是否存在定点E使$\overrightarrow{AE}•\overrightarrow{BE}$为定值?若存在,求出E点坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知,a=log0.30.2,b=log32,c=log0.23,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案