【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x .
(1)求f(log2 )的值;
(2)求f(x)的解析式.
【答案】
(1)解:∵f(x)为奇函数,且当x∈(0,+∞)时,f(x)=2x,
∴f(log2 )=f(﹣log23)=﹣f(log23)=﹣ =﹣3.
(2)解:设任意的x∈(﹣∞,0),则﹣x∈(0,+∞),
∵当x∈(0,+∞)时,f(x)=2x,∴f(﹣x)=2﹣x,
又f(x)是定义在R上的奇函数,则f(﹣x)=﹣f(x),
∴f(x)=﹣f(﹣x)=﹣2﹣x,即当x∈(﹣∞,0)时,f(x)=﹣2﹣x;
又f(0)=﹣f(0),f(0)=0,
综上可知,f(x)=
【解析】(1)利用函数的奇偶性及已知表达式可得f(log2 )=f(﹣log23)=﹣f(log23)=﹣ ,再由对数运算性质可得结果;(2)设任意的x∈(﹣∞,0),则﹣x∈(0,+∞),由已知表达式可求f(﹣x),再由奇偶性可得f(x);由奇偶性易求f(0);
【考点精析】根据题目的已知条件,利用函数的值的相关知识可以得到问题的答案,需要掌握函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.
科目:高中数学 来源: 题型:
【题目】设是由个实数组成的有序数组,满足下列条件:①,;②;③,
.
(Ⅰ)当时,写出满足题设条件的全部;
(Ⅱ)设,其中,求的取值集合;
(Ⅲ)给定正整数,求的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=loga(3﹣ax)(a>0,a≠1)
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)﹣loga(3+ax),请判定g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为4- ,
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C= .
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b及c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AD=1,AB=2,点E是C1D1的中点.
(1)求证:DE⊥平面BCE;
(2)求二面角A﹣EB﹣C的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com