【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=
.
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b及c的长.
【答案】
(1)解:因为cos2C=1﹣2sin2C=
,及0<C<π
所以 sinC=
.
(2)解:当a=2,2sinA=sinC时,由正弦定理
=
,解得c=4.
由cos2C=2cos2C﹣1=
,及0<C<π 得cosC=±
.
由余弦定理 c2=a2+b2﹣2abcosC,得b2±
b﹣12=0,
解得b=
或b=2
.
所以b=
或b=2
,c=4.
【解析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:
;余弦定理:
;
;
才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
=1(a>b>0)的焦距为2
, 且该椭圆经过点(
,
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是( )![]()
A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项的和记为Sn . 如果a4=﹣12,a8=﹣4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
:
的离心率
,短轴右端点为
,
为线段
的中点.
(Ⅰ) 求椭圆
的方程;
(Ⅱ)过点
任作一条直线与椭圆
相交于两点
,试探究在
轴上是否存在定点
,使得
,若存在,求出点
的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;![]()
(2)求出y关于x的线性回归方程y=
x+
,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注:
=
,
=
﹣
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,焦点在
轴上,离心率
.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点
为椭圆
上一点,直线
的方程为
,求证:直线
与椭圆
有且只有一个交点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com