精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E:=1(a>b>0)的焦距为2 , 且该椭圆经过点(,).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.

【答案】解:(Ⅰ)由题意得,2c=2=1;
解得,a2=4,b2=1;
故椭圆E的方程为+y2=1;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,
直线MN与y轴垂直,
则点N的纵坐标为0,
故k2=k1=0,这与k2≠k1矛盾.
当k1≠0时,直线PM:y=k1(x+2);
得,
+4)y2=0;
解得,yM=
∴M(),
同理N(),
由直线MN与y轴垂直,则=
∴(k2﹣k1)(4k2k1﹣1)=0,
∴k2k1=
【解析】(Ⅰ)由题意得,2c=2=1;从而求椭圆E的方程;
(Ⅱ)由题意知,当k1=0时,M点的纵坐标为0,点N的纵坐标为0,故不成立;当k1≠0时,直线PM:y=k1(x+2);联立方程得(+4)y2=0;从而解得yM=;可得M(),N();从而可得(k2﹣k1)(4k2k1﹣1)=0,从而解得.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点,直线,点在直线上移动, 是线段轴的交点, .

(Ⅰ) 求动点的轨迹的方程;

(Ⅱ)直线轴相交于点,过的直线交轨迹两点,

试探究点与以为直径的圆的位置关系,并加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|0≤x≤2},B={y|1≤y≤2},在下图中能表示从集合A到集合B的映射的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y= 的值域是R,且在(﹣∞,1﹣ )上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为4-
(1)求|MF|+|NF|的值;
(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连结DG并延长交圆于点A,作弦AB垂直EP,垂足为F.

(Ⅰ)求证:AB为圆的直径;

(Ⅱ)若AC=BD,求证:AB=ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为(

A.10
B.9
C.8
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 分别是的中点.

(1)求证:四边形是菱形;

(2)求异面直线所成角的大小 (结果用反三角函数值表示) .

查看答案和解析>>

同步练习册答案