精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an( n∈N*
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
分析:(1)由an+2=2an+1-an( n∈N*),变形为an+2-an+1=an+1-an,可知{an}为等差数列,由已知利用通项公式即可得出.
(2)令an=10-2n≥0,解得n≤5.令Tn=a1+a2+…+an=9n-n2.可得当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn,n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn即可得出.
解答:解:(1)∵an+2=2an+1-an( n∈N*
∴an+2-an+1=an+1-an
∴{an}为等差数列,设公差为d,
由a1=8,a4=2可得2=8+3d,解得d=-2,
∴an=8-2(n-1)=10-2n.
(2)令an=10-2n≥0,解得n≤5.
令Tn=a1+a2+…+an=
n(8+10-2n)
2
=9n-n2
∴当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn=9n-n2
n≥6时,Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn=n2-9n+40.
故Sn=
9n-n2,n≤5
n2-9n+40,n≥6
点评:本题考查了等差数列的通项公式及其前n项和公式、含有绝对值的数列的前n项和的求法、分类讨论等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}中,a1=1,an=
12
an-1+1(n≥2),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,则
lim
n→∞
(a1+a2+…+an)等于(  )
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=-60,an+1-an=3,(1)求数列{an}的通项公式an和前n项和Sn(2)问数列{an}的前几项和最小?为什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,对?n∈N*an+2an+3•2n,an+1≥2an+1,则a2=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)如果一个数列{an}对任意正整数n满足an+an+1=h(其中h为常数),则称数列{an}为等和数列,h是公和,Sn是其前n项和.已知等和数列{an}中,a1=1,h=-3,则S2008=
-3012
-3012

查看答案和解析>>

同步练习册答案